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Abstract—Concolic execution is a practical test generation
technique that explores execution paths by coupling concrete
execution with symbolic reasoning. It runs programs on given
inputs while capturing symbolic path representations, then
mutates and solves these constraints to generate new test inputs
for alternative paths. This approach has several fundamental
challenges, such as (C1) the inherent complexity of symboli-
cally modeling diverse programming language constructs and
environmental interactions, and (C2) the scalability issues of
constraint solvers when handling large, complex formulas.

In this work, we investigate whether LLM agents can help
address these longstanding challenges in test generation. We
propose a novel workflow which we call agentic concolic exe-
cution. Using an LLM agent for symbolization, our approach
is language-agnostic and can handle environmental constraints
without additional manual modeling effort. To ease pressure on
the constraint solver, we allow an LLM agent to summarize and
even reason about constraints directly in natural language. In
a significant evaluation of 12 real-world subjects, our research
prototype CONCOLLMIC attains significantly higher code cov-
erage (115%-233% higher) than state-of-the-art symbolic ex-
ecutors like KLEE that have been painstakingly hand-crafted
over many years, and identifies 11 new vulnerabilities. Our
results show that multi-step planning and tool integration en-
able agents to effectively mitigate reliability issues inherent in
LLM-based analysis and even reason symbolically about code.

1. Introduction

While security vulnerabilities have long plagued soft-
ware systems, modern software stacks have grown increas-
ingly complex and heterogeneous. It is not uncommon for
codebases to exceed thousands of lines of code, include mul-
tiple programming languages, and involve complex interac-
tions with external services and the broader environment.

Dynamic Symbolic Execution (DSE) is a widely-used
program analysis technique designed to systematically ex-
plore execution paths [1]. It treats program inputs as sym-
bolic variables, collects symbolic constraints along different
control-flow paths, and solves these constraints to generate
concrete inputs that exercise corresponding program behav-
iors. Concolic execution, a variant of DSE, couples concrete
and symbolic execution: it starts with a concrete input,
executes the program both concretely and symbolically to

gather symbolic constraints representing the executed path,
then negates selected constraints and solves for new inputs
to explore alternative paths [2]. These approaches have
achieved success in discovering vulnerabilities in real-world
software [3], played key roles in competitions like DARPA
Cyber Grand Challenges [4], [5], and proven effective in
both FLOSS and commercial software [2], [6], [7].

Despite their success, these approaches still face two
fundamental challenges when applied to modern software:

C1: Complex and Incomplete Implementations. Modern
DSE engines often integrate a symbolic interpreter with a
virtual-machine-style architecture [3]. This approach enables
them to collect symbolic constraints arising from diverse
programming language constructs and environmental in-
teractions, such as file and network operations. However,
developing comprehensive symbolic modeling rules for all
such behaviors leads to highly complex implementations. As
a result, DSE engines typically lack full support for complex
languages such as C and C++, offer no support for multi-
language codebases, and provide only partial modeling of
environmental interactions [3], [8], significantly hindering
their practicality.

C2: Expensive Constraint Solving. Even when a code-
base is fully supported, the sheer scale of modern software
presents challenges for constraint solving. Accurately rep-
resenting a full execution path in a program often results
in formulas with thousands of variables and conditions, an
issue exacerbated by the verbose representation used by
DSE engines, where, e.g., constraints for integers are typi-
cally represented as bitvectors [9], and arrays are modeled
at the individual element level, rather than as aggregate
structures [10], [11]. Moreover, many commonly used con-
straints, like those involving floating point or strings, cannot
be solved quickly by existing approaches, even when the
formulas involved are of only moderate size [12], [13].

Recently, Large Language Model (LLM) agents have
emerged as a transformative technology across various dis-
ciplines of computer science and beyond. In particular,
LLMs have demonstrated remarkable capabilities in general
mathematical reasoning [14], and specifically in reasoning
about real-world software artifacts [15]. LLM agents have
led to substantial advances in many software engineering
tasks such as program repair [16] and test execution [17].
One key advantage of such agents is their ability to invoke
analysis tools autonomously to enhance the power of LLMs.
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This raises the question: Can LLM agents be leveraged for
symbolic reasoning over complex software systems?

Despite their remarkable capabilities, LLMs appear un-
suitable for symbolic analysis at first glance. Firstly, LLMs
offer no formal or probabilistic guarantees of correctness
and often produce incorrect answers to queries. If compo-
nents of a DSE engine are delegated to an LLM, these erro-
neous answers could easily lead to poor exploration of the
actual program behaviors. Secondly, current state-of-the-art
foundation models also typically have high latencies, taking
time on the order of seconds to respond to a single query.
With solver latency already being a primary bottleneck in
traditional DSE approaches [9], [18], [19], it is unclear
whether incorporating LLMs will be beneficial even if they
are able to answer queries accurately.

In this work, we investigate whether LLM agents can
perform symbolic reasoning. If so, this could dramatically
simplify the design of new concolic executors for sys-
tems involving programming languages, constraint types,
and environmental interactions poorly supported by existing
engines, or even complex multi-lingual systems. Given that
state-of-the-art DSE engines take years to construct [20],
such an approach could have a substantial practical impact.

To combat the inherent untrustworthiness of LLMs, we
instantiate agentic symbolic reasoning via concolic exe-
cution. The resulting agentic system, CONCOLLMIC, is
the first language-agnostic concolic executor. Our approach
consists of a collection of LLM agents and modules, each of
which benefits from the rich problem-solving capabilities of
backend LLMs. We design an instrumentation module that
instruments the source code at strategic locations, enabling
us to abstract the execution traces into a uniform repre-
sentation at runtime. This abstraction is then symbolized
by a summarization agent, whose symbolization focuses
on program semantics by permitting one of many possible
constraint representations, expressed in natural language,
source-level syntax, or formal notations like SMT formu-
las, as needed. These constraints are then solved by a
solving agent to generate new test inputs. To mitigate the
inherent untrustworthiness of LLMs and encourage multi-
step reasoning, these agents are each equipped with several
grounded software tools, such as code retrieval and a state-
of-the-art SMT solver [21]. As such, we deem our approach
agentic concolic execution.

In a comprehensive evaluation across eight real-world
C/C++ programs, four multi-lingual systems, and a special-
ized floating-point benchmark, we find that agentic concolic
execution is remarkably effective. CONCOLLMIC is able to
cover application domains unsupported by existing engines,
attain 115%-233% higher code coverage than conventional
DSE tools as well as 81% higher coverage than AFL++, and
find 11 previously unknown bugs.

In summary, we make the following contributions:
1) We formulate a new paradigm of symbolic analysis using

agentic reasoning to address the core challenges in DSE:
(C1) symbolic modeling and (C2) constraint solving.

2) We build the first ever language- and theory-agnostic
concolic execution engine, CONCOLLMIC, which is

highly effective in automated test generation. To fos-
ter further research in this area, we have also made
CONCOLLMIC publicly available as open source at
https://github.com/ConcoLLMic/ConcoLLMic.

3) We conduct an empirical study to demonstrate that agen-
tic access to multi-step planning and tools mitigates
reliability concerns with LLMs in practice, and enables
them to reason about real-world software symbolically.

2. Background and Motivation

Dynamic Symbolic Execution (DSE). As a variant of
symbolic execution [22], [23], [24], DSE is one of the
primary techniques to uncover software defects. To do so,
DSE engines produce inputs to traverse each control-flow
path in the program under test, by executing the program
with symbolic (i.e., initially unconstrained) inputs. During
execution, values of variables in the program are represented
by expressions over these symbolic inputs. At each branch
in the program, the symbolic executor accumulates the
constraints necessary to follow the desired path in terms
of these program variables. To materialize a concrete set
of inputs which follow the path, the executor solves the
accumulated constraints, typically by delegating to a dedi-
cated constraint solver. Inputs provided by the solver that
satisfy these constraints will necessarily follow the intended
program path.

Gathering symbolic constraints is a core component of
DSE, which translates behaviors from the concrete seman-
tics of the program into logical constraints over symbolic
inputs. For some behaviors—such as arithmetic operations
over integers—this translation is direct and mechanical. In
other cases, the translation process can be significantly more
complicated [25]. Gathering these constraints more effi-
ciently has been the subject of recent research [8], [26], often
at the cost of increased implementation complexity (C1).
Furthermore, the program under test will typically interact
with its environment, including the file system, hardware
devices, networks, and external library calls, among many
others. Often, the semantics of these interactions are either
unavailable (e.g., due to proprietary implementations), too
complex to model symbolically with precision, or require
significant efforts from the developers [3], [27].

Constraint solving is also a core component of DSE.
The logical constraints, if gathered successfully, are typi-
cally encoded in the form of Satisfiability Modulo Theories
(SMT) formulas [28]. SMT formulas are first-order logical
formulas which generalize Boolean Satisfiability (SAT) to
support theories like arrays, arithmetic integers, and bitvec-
tors. Indeed, the rise of practical SMT solvers, including
Z3 [21], STP [29], and CVC4 [30], was instrumental in the
success of symbolic execution engines [3], [6], [7], [10],
enabling them to solve complex constraints at the scale of
some real-world programs. However, given the complex-
ity of these constraints and tight latency requirements in
solving times [19], constraint solving remains a significant
bottleneck (C2). As a result, modern engines will often drop
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Algorithm 1: Conventional Concolic Execution
Input : Program P , initial concrete input I0

1 P̃ ← INSTRUMENT(P)
2 WorkList← {I0}
3 while WorkList ̸= ∅ do
4 I ← SELECTNEXT(WorkList)
5 (O, T) ← EXECUTE(P̃ , I)
6 (PC, σ) ← SYMBOLIZE(T)
7 PC’ ← FLIPCONSTRAINT(PC)
8 I’ ← SOLVE(PC’, σ)
9 WorkList ← WorkList ∪ I’

constraints [26] or use incomplete solvers [18] to increase
throughput at the cost of precision.

Concolic Execution. Concolic execution engines [2],
[6], [7], [8] couple symbolic execution with concrete execu-
tion by executing the program both concretely and symboli-
cally. Algorithm 1 shows the general procedure for concolic
execution. First, the program is augmented to emit execution
information at runtime (line 1), so that execution paths can
be tracked. This augmentation is often an instrumentation
pass over the original program [8]. Next, the augmented
program P̃ is executed concretely to collect its output O and
execution trace T (line 5), which will then be symbolized
as path constraints (PC) and a symbolic store (σ) that
maps variables to symbolic expressions over inputs (line 6).
In modern concolic execution engines, lines 5-6 of the
algorithm are often performed in lockstep, accumulating PC
as program P̃ is being executed. To generate a new input
which explores a different path, the executor chooses a prefix
of PC and negates the last constraint in that prefix (line 7).
The resulting path constraints PC ′ are passed to a constraint
solver with the symbolic store σ (line 8), giving a new input
I ′ which is added to the worklist (line 9).

2.1. Motivating Example

To illustrate the challenges faced by traditional concolic
execution, consider the program in Figure 1 from FP-
Bench [12]. This program takes two command-line string
arguments, converts them to 32-bit floats via atof, and
counts the representable floating-point numbers between
them via function count. If this count does not exceed
FLOATS_BETWEEN_BUG (i.e., 20), the program triggers a bug
(line 16). Specifically, count function’s loop body (lines 7–
10) implements floating-point increment by treating the
float’s bit representation as an unsigned integer (i.e. type
casting): it copies the float to integer temp via memcpy
(line 8), increments the integer representation (line 9), and
copies back (line 10) to get the next representable floating-
point value [12].

Conventional Concolic Execution. Consider testing this
code with an initial input I: I[0]=“1.00", I[1]=“1.00001".
There are 84 representable floats in [1.00, 1.00001). Hence,
I’s execution iterates through the for-loop 84 times and fails

1 #define FLOATS_BETWEEN_BUG 20
2 int cnt = 0;
3
4 int count(float start , float end) {
5 for (float cur = start; cur != end; cnt++) {
6 fprintf(stderr, "[src/count.c] enter count 1");
7 unsigned temp;
8 memcpy (&temp , &cur , sizeof(float));
9 temp ++;

10 memcpy (&cur , &temp , sizeof(float));
11 // fprintf(stderr, "[src/count.c] exit count 1");
12 }
13
14 if (cnt <= FLOATS_BETWEEN_BUG) {
15 fprintf(stderr, "[src/count.c] enter count 2");
16 printf("BUG triggered!");
17 return -1;
18 // fprintf(stderr, "[src/count.c] exit count 2");
19 }
20 }
21
22 int main(int argc , char **argv) {
23 fprintf(stderr, "[src/count.c] enter main 1");
24 float start = atof(argv [1]), end = atof(argv [2]);
25 __assume__(start < end);
26 count(start , end);
27 // fprintf(stderr, "[src/count.c] exit main 1");
28 }

Figure 1: Motivating example from FP-Bench [12], with
additional instrumentation statements inserted.

the condition at line 14. During concolic execution, a sym-
bolic store σ: {program variable 7→ symbolic expression}
tracks the symbolic states of variables. After i iterations,
the symbolic store takes the form:

σi = {start 7→ α, end 7→ β}︸ ︷︷ ︸
initial state σ◦

∪{cnt 7→ i, cur 7→ curi = f i(α)}︸ ︷︷ ︸
loop iteration i

Here, f represents a symbolic function capturing the loop
body logic, including complex operations such as pointer
manipulation, memory operations via memcpy, and type
casting. f i(α) denotes applying f repeatedly i times (i.e.,
f i+1(α) = f(f i(α))). Similarly, the symbolic path con-
straints PC accompanying I’s execution take the form:

PC : α = atof(I[0])∧ β = atof(I[1])

∧
n−1∧
i=0

(
curi ̸= β

)
∧ curn = β ∧ cntn > 20

where n = min{k ≥ 0 : fk(α) = β} denotes iterations
needed from α to β via f . Concolic execution then negates
the last clause in a prefix of PC to generate PC ′, and passes
these constraints to a solver to generate the next input I ′.

Problems. The above symbolic representation reveals
several fundamental challenges:

(1) External functions. The constraints PC contain ex-
ternal functions like atof and memcpy (encoded in f ),
which are not part of the source code but are essential
for symbolization (C1). Handling these functions requires
either: (i) making their implementations available, which
substantially bloats code size while introducing many low-
level implementation details that obscure high-level seman-
tics; (ii) manually modeling them, which is expensive and
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error-prone; or (iii) concretizing their arguments, which sac-
rifices completeness and can potentially render the formula
unsolvable—as indeed occurs in our example.

(2) Verbose and complex formulas requiring special-
ized theory support. The constraints are already extremely
verbose, containing hundreds of clauses and growing pro-
portionally to loop iterations—making them much larger
than the original program in Figure 1. Since floating-point
numbers are encoded as bitvectors in SMT, even a single
clause in PC expands into a collection of 32 bit-level
constraints, further overwhelming the constraint solver (C2).
Moreover, state-of-the-art engines like KLEE [3] lack ad-
equate floating-point support for such constraints. Finding
the bug at line 16 requires a specialized KLEE version [12],
which took over 10 months to develop (as per the authors) in
addition to years of work on the original KLEE. Despite this
substantial effort, it still fails for higher precision numbers
such as 16-byte doubles due to incomplete theory support.

Our Approach. CONCOLLMIC circumvents these chal-
lenges by operating at higher semantic abstraction lev-
els. For this example, instead of generating verbose
implementation-level formulas that mechanically mirror ex-
ecution flow, CONCOLLMIC distills the program’s core
intent into natural language (NL) constraints: “find two
floating-point numbers with fewer than 20 representable
numbers between them”. This representation directly cap-
tures program semantics, leveraging LLMs’ reasoning ca-
pabilities and general knowledge of theories and library
functions. Then, an autonomous solving agent bridges these
high-level semantic constraints with precise computational
tools. Instead of simply translating high-level constraints
into traditional solver formats, this agent solves constraints
by understanding their semantics, decomposing problems
into sub-tasks, and invoking tools on demand to obtain
grounded feedback that iteratively refines its reasoning. As
a result, this agentic workflow enables CONCOLLMIC to
efficiently explore complex paths that are intractable for
traditional methods.

3. System Design

In this section, we first introduce the high-level workflow
of our agentic framework for concolic testing, highlighting
its key differences from conventional counterparts. Then, we
elaborate on each component in detail.

3.1. System Overview

Workflow. Figure 2 depicts CONCOLLMIC’s workflow,
which resembles Algorithm 1 at a high level, featuring
instrumentation and testing modules. However, in our ap-
proach, each of these major components is instantiated with
LLM support (shaded in gray), rather than static algorithms.

(1) Instrumentation Stage. First, CONCOLLMIC instru-
ments the target program to support tracking concrete execu-
tion flow. Unlike traditional approaches relying on language-
specific parsers or runtime instrumentation, CONCOLLMIC
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Figure 2: CONCOLLMIC workflow: Stage-1: ① source-code
level instrumentation for execution tracing, and Stage-2:
iterative testing which, for the input I to explore, ② traces
its execution EA(P̃ |I), ③ distills new path constraints PC ′

targeting an alternative path, ④ produces a satisfying input I ′
and ⑤ validates it. Modules in gray are powered by LLMs,
with two agents supported by their specialized toolkits.

operates directly at the source code level (①). To support
diverse programming languages, CONCOLLMIC employs
instrumentation to make the program output uniform textual
logs across different language runtimes. Figure 1 illustrates
the instrumented code. Specifically, CONCOLLMIC adopts
a block-based approach that identifies code units natu-
rally bounded by control-flow constructs (e.g., conditional
branches and loops) and instruments their boundaries via
flow-tracing statements: pairs of logging statements (e.g.,
lines 6 and 11) that wrap each logical code unit (e.g.,
lines 7-10) with unique identifiers. We refer to the wrapped
code units as source blocks. An LLM is employed to insert
these flow-tracing statements conforming to each language’s
syntax, leveraging its multilingual understanding for this
pattern recognition task. This design is deliberate: (i) the
structured log format captures sufficient execution informa-
tion for downstream reconstruction (ii) the instrumentation
pattern maintains simplicity for reliable LLM-based inser-
tion across diverse programming paradigms and (iii) the
paired pattern coupled with block identifiers enables us to
perform language-agnostic offline validation for the LLM’s
output, enhancing the overall reliability of this module.

This instrumentation process produces two artifacts en-
abling the subsequent execution tracing: (i) an instrumented
program P̃ that emits execution traces at runtime, and (ii) a
mapping M from source block identifiers to corresponding
source lines (e.g., Table 1). These two artifacts enable
tracking each execution trace and maintaining an internal
line coverage bookkeeping for subsequent testing. Crucially,
once instrumented, subsequent execution tracing becomes
language-agnostic and can be performed without requiring
per-execution LLM queries or language-specific parsers.

(2) Testing Stage. Then, CONCOLLMIC initiates itera-
tive concolic exploration with an initial test input I0 and
maintains a WorkList of test inputs. In each iteration, CON-
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TABLE 1: Mapping from source block identifiers to source
lines for the instrumented code in Figure 1.

⟨filepath, blockID⟩ Source Lines
⟨src/count.c, (main, 1)⟩ src/count.c: 24-26
⟨src/count.c, (count, 1)⟩ src/count.c: 7-10
⟨src/count.c, (count, 2)⟩ src/count.c: 16-17

COLLMIC selects one input I from the list for exploration.
Building upon the instrumented module, CONCOLLMIC
(②) can capture the concrete execution P̃ |I and compress it
into a concise execution abstraction EA(P̃ |I). This abstrac-
tion preserves only essential information, including function
call chains and executed files (files containing code that was
executed), where unexecuted source blocks are replaced with
comments indicating their global coverage status. Figure 3
shows an illustrative example. Removing unexecuted blocks
instead of retaining executed ones offers two advantages:
(i) the condition statements remain visible, and (ii) the
global definitions and variable declarations stay accessible.
These elements provide essential supplementary information
for understanding the execution flow.

The execution abstraction EA(P̃ |I) is then forwarded
to the Path-Constraint Summarization Agent (③). This is an
autonomous agent tasked with selecting a branch b (along
the execution trace) to flip and distilling symbolized con-
straints PC ′ to materialize this branch flip. The program P̃
is expected to exercise the alternative branch of b should
PC ′ be satisfied, and the Constraint Solving Agent (④) is
responsible for generating a test input I ′ that satisfies these
constraints. Both agents are able to invoke various tools
supported by the action serving backend, including code
retrieval and the state-of-the-art constraint solver Z3 [21].

The generated test input I ′ is then executed to test the
program and undergoes validation (⑤): if the execution trace
indicates a successful branch flip or new code coverage, I ′
is added to WorkList for future exploration. CONCOLLMIC
repeats this process until the time budget is exhausted.

Key Differences from Conventional Concolic Execu-
tion Tools. While CONCOLLMIC adheres to the overall
workflow outlined in Algorithm 1, it diverges from it in
two important aspects:
1) First, conventional concolic executors bundle the con-

crete and symbolic execution (line 5-6), whereas CON-
COLLMIC performs symbolization post factum on exe-
cution abstractions. This essentially decouples the sym-
bolization from any specific language and enables a
multilingual workflow via the instrumentation module’s
unified interface (C1).

2) Second, a primary goal of CONCOLLMIC is to ex-
press constraints at arbitrary abstraction levels, harness-
ing LLM-driven semantic understanding (C2). To facili-
tate this representation, CONCOLLMIC chooses a target
branch to flip (line 7) before symbolization (line 6). It
does so because the fully abstracted constraints (e.g., in
NL) may no longer capture implementation-level branch
details (e.g., for and if details in lines 5 and 14 in
Figure 1). Reversing the order enables the LLM to

(1) Function Call Chain:
[src/count.c] main → [src/count.c] count

(2) Executed Files with Deleted Unexecuted Blocks and Their Cov Data:
// src/count.c (28 lines total)
#define FLOATS_BETWEEN_BUG 20
int cnt = 0;

int count(float start , float end) {
for (float cur = start; cur != end; cnt++) {

unsigned temp;
memcpy (&temp , &cur , sizeof(float));
temp ++;
memcpy (&cur , &temp , sizeof(float));

}
if (cnt <= FLOATS_BETWEEN_BUG) {

// Unexecuted lines 16-17 removed. Line cov: 0/2
}

}
int main(int argc , char **argv) {

float start = atof(argv [1]), end = atof(argv [2]);
__assume__(start < end);
count(start , end);

}

Figure 3: Example of an execution abstraction when using
(1.00, 1.00001) as input for the program in Figure 1.

directly synthesize high-level constraints that match the
implementation-level target branch.

3.2. Stage-1: Instrumentation

To address C1, CONCOLLMIC treats different program-
ming languages uniformly by leveraging the LLM’s multi-
lingual capabilities. At a high level, it abstracts the program
as a collection of source lines and inserts appropriate flow-
tracing statements. These flow-tracing statements can help
track execution at runtime, enabling downstream agents to
comprehend the program’s execution flow.

Algorithm. This process is outlined in Algorithm 2,
with LLM-powered procedures highlighted in gray boxes .
Given the source code S of program P in any language,
the module produces two artifacts: (1) instrumented source
code S̃ containing logging statements, which is subsequently
compiled into P̃ , and (2) a mapping M that translates a
source block to its corresponding source code lines.

The instrumentation module processes each file F ∈ S
independently (lines 2-13). Each file F is further split into
manageable chunks not exceeding ChunkSize (default 800
lines) to accommodate the output token limit of the LLM
(line 4). The chunks are aligned with function boundaries
recognized by the LLM to ensure syntactic integrity. For
each code chunk Ci, the instrumentation agent prompts an
LLM to insert logging statements at strategic points in the
code to track execution flow (line 9). The instrumentation
follows this pattern:

enter func_name block_no
original_code
// exit func_name block_no

This instrumentation wraps sequences of executable state-
ments with a pair of flow-tracing statements carrying a block
ID—the tuple of (func_name, block_no). We refer to
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Algorithm 2: Source Code-Level Instrumentation
Input : S - Source code of program P
Output : S̃ - Instrumented source code of P̃

M - Mapping from block IDs to code lines
1 S̃ ← ∅, M← ∅
2 foreach F in S do
3 F̃ ← []
4 chunks ← SPLIT(F , ChunkSize)
5 foreach Ci in chunks do
6 C̃i ← Ci

7 feedback← Null, isValid← False
8 while ¬ isValid do
9 C̃i ← INSTRUMENT(C̃i, feedback)

10 isValid, feedback ← VALIDATE(C̃i)

11 F̃ .append(C̃i)

12 S̃ ← S̃ ∪ POSTPROCESS(F̃ , FILEPATH(F ))

13 M←M∪ GETMAPPING(F̃ )

14 return S̃,M

each such wrapped sequence of executable statements as a
source block. These flow-tracing statements naturally delin-
eate control-flow constructs such as conditional branches (if-
else, switch-case) and loops (for, while). Notably, the “exit”
statements are commented out and serve only as markers
for block boundaries in the source file. In particular, we use
them as sanity checks for the correctness of the LLM-based
instrumentation, as explained next.

The validation check (line 10) verifies the structural
integrity of the instrumentation. Specifically, it checks that
each “enter" logging statement must pair with exactly one
“exit", and these pairs must nest consistently—akin to paren-
thesis matching. If the validation fails, the module emits
diagnostic feedback detailing the relevant block ID and the
line number of any unclosed or mismatched entry–exit pair.
While this is not a guarantee of correctness, this feed-
back enables iterative refinement of the instrumented chunk
(lines 8–10).

After all chunks in C have been instrumented and val-
idated, a POSTPROCESS pass (line 12) combines them by
appending the file path of F to the logging statements. At
the end, each code block is indexed by a globally unique
tuple ⟨filepath, block ID⟩, and is mapped to a unique range
of source lines. This mapping is stored in M (line 13).

As an example, Figure 1 shows the instrumented code
with inserted flow-tracing statements colored, and Table 1
shows the mapping of source blocks to source lines. By
matching the output sequence of flow-tracing statements,
CONCOLLMIC is able to reconstruct: (a) the function call
chain, and (b) the set of executed source blocks, which are
used to construct the execution abstraction and maintain
global line coverage records. Note that the function call
chain may be approximated in certain edge cases. Take
Figure 1 as an example: assume that cnt is initialized with
a value greater than FLOATS_BETWEEN_BUG at line 2, and
count(1,1) is invoked. In this case, no instrumentation logs

Algorithm 3: Autonomous Workflow for the Con-
straint Summarization and Solving Agent

Input : I - Agent’s task-specific input and instruction
Saction - Agent’s action space

Output : O - Agent’s output
1 H ← [ I ]
2 action ← Null
3 while ¬ (ISFINISHACTION(action) or timeout) do
4 action ← CHOOSEACTION(H , Saction)
5 result ← PROCESSACTION(H , action)
6 H .append(result)

7 O ← EXTRACTRESULT(H)
8 return O

in count would be output, resulting in count being omitted
from the call chain. Nevertheless, the Summarization Agent
can still leverage the CODEREQUEST action to request the
corresponding code for supplementing the context.

Benefits. In summary, the advantages of our instrumen-
tation approach are threefold:
1) Low manual effort: Unlike traditional methods that

depend on language-specific parsers or runtime-specific
instrumentation, our approach can process the target
program in a fully language-agnostic pipeline by leverag-
ing LLMs’ deep multilingual code understanding. This
means that our approach is applicable on a wealth of
popular programming languages with zero additional
configuration.

2) Cross-language tracing: Perhaps more importantly, the
instrumentation allows concrete executions to be ana-
lyzed in a uniform and language-agnostic manner. Our
block-to-line mapping representation enables the analysis
of the execution flow of complex polyglot systems that
cross language boundaries.

3) Modularity: Our design also retains the modularity of
conventional methods, thanks to independent per-chunk
instrumentation. As a result, CONCOLLMIC can incre-
mentally re-instrument the target program on subsequent
modifications, adding logging only to the functions that
have been changed. This incremental instrumentation can
significantly reduce costs during the continuous devel-
opment of large software projects. To demonstrate the
feasibility and effectiveness of our approach to instru-
mentation, we report the cost and accuracy in §4.4.1.

3.3. Stage-2: Testing

The key components in the testing stage are the Path-
Constraint Summarization Agent and the Constraint Solving
Agent (Summarization Agent and Solving Agent for short).
The Summarization Agent produces self-contained path con-
straints PC ′ that serve as the interface between the two; the
Solving Agent then synthesizes a test input I ′ that satisfies
all specified constraints. Unlike conventional symbolic ex-
ecutors that submit fixed-format queries to a static solver,
our framework supports arbitrary abstraction levels (C2):
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TABLE 2: Action space of the Summarization Agent, with the finishing action marked with *.
Tool Name Arguments Description
THINK reasoning Record reasoning and planning.
CODEREQUEST A list of file:[line_range] View the source lines and coverage status in file, optionally within specified line_range.
CHOOSEBRANCH target_branch, rationale, lines_to_cover Select a target_branch to flip and the expected lines_to_cover after its flipping.
SUMMARIZE path_constraint Generate path_constraint (in NL/PL/SMT) required to reach target_branch.
FINISH* task_completed Stop exploring the current test case.

TABLE 3: Action space of the Solving Agent, with the finishing action marked with *.
Tool Name Arguments Description
THINK reasoning Record reasoning and planning.
EXECUTECODE code Execute the given Python code and collect its output.
QUERYSMT SMT_formulas Solve SMT formulas using Z3.
GENERATETEST* is_satisfiable, exec_program Generate a test input exec_program (in harness.py) if the given constraint is_satisfiable.

constraints may be expressed as SMT formulas, program-
ming language (PL), or even in natural language (NL), as
deemed appropriate by the LLM agent.

Autonomous Agents. Algorithm 3 illustrates the shared
autonomous workflow of both agents, with the procedure in-
volving the LLM highlighted in a gray box . The workflow
begins by initializing the action history H with the instruc-
tions and the initial input I (line 1). Then, the agent au-
tonomously chooses its actions from its action space Saction
based on the current history H (lines 3-6). These actions are
supported by a toolkit of offline utilities listed in Table 2
and 3. Each action request is serviced locally (line 5), and
its result is appended to the history H (line 6) for the next
iteration. This iterative process continues until a finishing
action or a timeout is reached (line 3), after which the
output is extracted from the cumulative history H (line 7).
With the provided toolkit, this workflow enables the LLM to
(1) record internal planning and reasoning, and (2) interface
with external sources (e.g., browsing or executing code) on
demand, to carry out multi-step reasoning for the given task.
We illustrate this agentic workflow in Figure 4 using our
running example. Below we present the Summarization and
Solving Agent in more detail.

Constraint Summarization. The Summarization Agent
takes in as inputs the concrete test input I and its execution
abstraction EA(P̃ |I), which succinctly represents the con-
crete execution on I with essential information, including
function call chains and the source lines essential for under-
standing the execution flow, as illustrated in Figure 3. This
execution abstraction is derived by processing the emitted
trace T (i.e. the output sequence of flow-tracing statements)
using the instrumentation pattern and the mapping M.

The action space of the Summarization Agent is detailed
in the upper half of Table 2. It can plan its actions and reason
about the code via THINK or browse code snippets that are
not present in EA(P̃ |I) by invoking CODEREQUEST. Based
on this information, the agent’s main task is to first select a
target_branch through CHOOSEBRANCH, and eventually
distill the symbolic path_constraint via SUMMARIZE.
This process could be repeated to select multiple target
branches before a voluntary FINISH or a timeout is reached.
Note that we deviate from the conventional Algorithm 1
by selecting multiple (instead of one) target branches per

iteration to amortize the token cost of execution abstraction.
The outcome is a list of triples denoted (target_branch,

path_constraint, lines_to_cover). The target_branch
is a condition along the concrete execution trace of P̃ |I
but with a flipped branch. This flipping is expected to
introduce new code coverage at lines_to_cover. The
path_constraint captures the symbolic constraints re-
quired to reach these target lines. We highlight that the gen-
erated constraints encapsulate both input and environmental
constraints and are expressed in an appropriate notation,
e.g., natural language (NL), programming language (PL),
or formal SMT formulas. Moreover, the path constraint
summarization implicitly leverages the LLM’s knowledge
of program semantics, symbolization rules, and common
environmental interactions (e.g., system calls, libc built-in
functions).

Constraint Solving. The Solving Agent takes as inputs
the distilled constraints from the Summarization Agent, and
the base concrete test input I as a reference. Its aim is
to synthesize a satisfying test input I ′ for the specified
constraints. Similar to the Summarization Agent, it can
invoke multiple tools from its action space to achieve this
goal (as shown in Table 3). These include planning and
reasoning via THINK, submitting SMT queries to a trusted
backend solver with QUERYSMT, and executing Python
scripts it has written through EXECUTECODE. Collectively,
these tools enable an analyze-hypothesize-validate workflow
to reason precisely across a wide range of theories. As a final
output artifact for a satisfiable constraint, the Solving Agent
produces a Python “harness” via GENERATETEST. This
harness executes the target program with all necessary inputs
and the correct environment settings to flip the targeted
branch. The execute_program function is extracted as the
final outcome of the Solving Agent.

Workflow Example. Figure 4 illustrates the autonomous
workflow of the two agents on our motivating example
in Figure 1. Based on the execution abstraction shown in
Figure 3, the Summarization Agent first analyzes uncovered
branches and chooses to cover the True branch of the if
condition. Then, it formulates path constraints expressed in
natural language, capturing program requirements, variable
relationships, and high-level semantics. The Solving Agent
then takes these constraints and independently orchestrates
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{THINK} [reasoning] For single-precision floats around 1.0, the 
smallest increament is approximately 2-23 ≈ 1.19e-7. So to have at 
most 20 values, the range is approximately 20 * 1.19e-7 ≈ 2.38e-6. 
Let me try to verify how float-pointing values are distributed.

Your role is to solve path constraint for a new input… Tools:
The original concrete input I is:
The new path constraints to solve are:  

{THINK} [reasoning] Let me think about how to approach this:
1. The original input [1.0, 1.00001) does not meet the constraints, 

indicating it contains over 20 consecutive representable floats.
2. Let me calculate a suitable end value if start is 1.0

Constraint Solving Agent

[Path Constraints PC’]

{EXECUTECODE} [code] Python code to execute:
def next_float(f): ...  # calculate the next float
current = 1.0
for i in range(19):

current = next_float(current)
print(next_float(current)); # the 20th value

Execution Result: stdout = 1.000002384185791

{GENERATETEST} [is_satisfiable] True 
[exec_program] New test input I’ expressed in  new_harness.py:
subprocess.run('count 1.0 1.000002384185791')...

Given details about the program execution, your role is to select several 
target branches and generate path constraints in NL/PL/SMT format…
Available tools you can use are here:
The input I with execution abstraction:

{CODEREQUEST} [file] src/count.c [line_range] 16-17

|16|Uncovered|: printf("BUG triggered!");
|17|Uncovered|: return -1;

{CHOOSEBRANCH} 
[target_branch] if (count <= FLOATS_BETWEEN_BUG) => true
[rationale] This branch seems to represent a key program behavior

and its guarded block has 0% line coverage
[lines_to_cover] src/count.c:16-17

{THINK} [reasoning] Let me list and analyse all unexecuted branches…

{SUMMARIZE} [path_constraint]
a) The program should take 2 CLI arguments start and end.
b) They are both valid FP numbers with start < end.
c) The number of distinct IEEE-754 single-precision floating-point 

values in the range [start, end) must be ≤ 20.

Path-Constraint Summarization Agent

[Table 2]
[Figure 3]

{FINISH} [task_completed] True

harness.py

[Table 2]
harness.py

Figure 4: Agentic workflow of the Summarization (left) and Solving (right) Agents on our running example, including
the initial instructions with inputs & available tools , actions (formatted as “{TOOLNAME}[Arguments]”), and grounded
feedback from the tools. Some feedback are omitted for brevity (e.g., acknowledgments of recorded reasoning for THINK).

a sophisticated reasoning process, including analyzing the
constraints, performing mathematical calculations to deter-
mine feasible input ranges, and resorting to Python execu-
tion to compute accurate concrete values. Finally, these two
agents collaborate to successfully synthesize a test input I ′
that can trigger the bug.

Execution and Validation. After obtaining the new test
input I ′, we execute I ′ and observe the behavior of P
to detect potential bugs. To combat potential imprecision
arising from the usage of LLM agents for summarization
and solving, we perform an additional validation step on
the emitted trace to reduce false positives. Namely, we check
if the intended lines_to_cover are indeed reached in the
concrete execution. We note that such validation does not
provide strict guarantees of correctness, as it depends on
our internal coverage tracking, which itself relies on the
LLM’s instrumentation granularity. We defer the discussions
on validation accuracy to §4.4.1. Test inputs that have either
successfully reached the target lines, or introduced new
coverage elsewhere in the program, are retained in our
WorkList for further exploration.

In the next iteration, CONCOLLMIC selects a new base
input from the WorkList for exploration. Path selection is
a persistent challenge in symbolic execution, with various
strategies offering benefits in different contexts. Our tool
directly instantiates this selection by consulting an LLM
with contextual information about each input, such as its
execution information and its path constraints. We include a
preliminary evaluation of this component in Appendix A
and observe no significant difference in the performance
of our LLM-based selection relative to conventional search
strategies like depth-first search, indicating the effect of this
selection is not significant.

3.4. Implementation

We implement the prototype of CONCOLLMIC in 8.2k
lines of Python code. For the foundational LLM infras-
tructure, we use claude-3.7-sonnet-20250219 [31] from An-
thropic. For the LLM’s temperature settings, we use 0 for
the instrumentation module, and 0.5 for the two agents. This
differentiated setting is because the instrumentation is a rel-
atively deterministic process, while the other agents should
be more “creative”. To save cost and improve efficiency,
we utilize the LLM backend’s incremental prompt caching
in the multi-turn conversation. Meanwhile, we implement
a parallelization mechanism for the Solving Agent. Specifi-
cally, given that the Summarization Agent may select multi-
ple target branches and generate multiple corresponding path
constraints, we fork distinct solving pipelines for each path
constraint, which compensates for the LLM’s high response
latency and improves the overall testing throughput. For
more details, please refer to the open-source repository at
https://github.com/ConcoLLMic/ConcoLLMic.

4. Evaluation

In this section, we aim to understand the effectiveness
of our proposed approach through an extensive evaluation.
After presenting our evaluation setup (§4.1), we first demon-
strate CONCOLLMIC’s effectiveness on a diverse set of
application domains (§4.2), including monolingual (§4.2.1),
polyglot (§4.2.2), and floating-point programs (§4.2.3). We
then examine the effectiveness of our approach in bug
discovery (§4.3). Finally, we assess our design for both
stages in CONCOLLMIC to better understand its remarkable
performance (§4.4).
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TABLE 4: Real-world benchmarks, including monolingual C/C++ (top) and polyglot programs (bottom). Benchmarks marked
with “*” were created in 2025, after claude-3.7-sonnet’s training cut-off.

Subject Version Inputs Language # kLoC Functionality
woff2 #0f4d30 Binary (font data) C++ 56 Font compression and decompression
oggenc #235540 Binary (audio data), CLI arguments C 83 Audio multimedia conversion for GNU
bc 1.08.1 Textual (math expression, script), CLI arguments C 29 Arbitrary precision calc & scripting for GNU
libmatheval 1.1.11 Textual (math expression) C 15 Mathematical expression evaluation for GNU
libyaml #840b65 Textual (YAML file) C 11 YAML parsing and emitting library
libsoup #eb79a7 Network (HTTP message) C 71 HTTP client/server library for GNOME
krep* 1.2.0 Textual (regex), CLI arguments C 4 Optimized string search utility
confetti* 1.0.0-b4 Textual (customized config. file) C 9 Unopinionated config. language and parser
ultrajson 5.10.0 Textual (JSON data), CLI arguments Python, C 9 JSON parsing library
jansi 2.4.2 Textual (ANSI escape code), CLI arguments Java, C 72 Console output formatting library
py4j #cb9e39 Textual (Python program and Java object) Python, Java 21 Python-JVM gateway for object access
protobuf-go #e5d446 Textual (Protobuf schema file), CLI arguments Go, C++ 36 Cross-language data interchange format

4.1. Evaluation Setup

Benchmarks. To evaluate our approach’s effective-
ness and generality, we compile a set of benchmarks
spanning both monolingual C/C++ programs and polyglot
systems written in a combination of programming lan-
guages, as detailed in Table 4. For monolingual programs,
we select diverse benchmarks by referring to prior re-
search [12], [32], [33], [34] and OSS-Fuzz [35] and use
existing seed inputs from these projects. For polyglot sys-
tems, we choose real-world programs involving complex
cross-language interactions. Specifically, as shown in Ta-
ble 4, our benchmarks exercise varied constraint theories
including bit-level operations (binary font/audio data), arith-
metic computations (mathematical expressions), structured
data parsing (YAML/JSON/HTTP/Protobuf/customized for-
mat), string operations (regex patterns), and programming
languages (scripts/Python/Java). These targets collectively
cover diverse application domains (numerical computation,
command-line utilities, parsing libraries, network protocols,
and cross-language bridges) and take various input sources
(stdin, file data, network messages, and environmental in-
puts like CLI arguments). To mitigate data leakage and
demonstrate the generality of our approach, we also include
two projects (krep and confetti) created after claude-3.7-
sonnet’s training cut-off [36]. Furthermore, we include a
floating-point benchmark, FP-bench from Liew et al. [12],
as an example of complex constraint reasoning evaluation.
These benchmarks collectively highlight key challenges in
DSE, such as intricate constraint reasoning and environmen-
tal interactions.

Comparison Tools. To the best of our knowledge, no
existing symbolic execution frameworks support a wide
variety of multi-language systems. We therefore compare
against leading C/C++ concolic execution engines to ensure
rigorous and meaningful comparison due to the proliferation
of well-optimized tools targeting C/C++. To this end, we
select the latest versions of:

1) KLEE [37], an established DSE engine;
2) SymCC [8], a compilation-based concolic executor; and
3) SymSan [32], a concolic executor that leverages LLVM’s

data-flow analysis to optimize constraint collection.

To capture domain-specific strengths, we further include two
specialized KLEE variants:
4) KLEE-Float [12], augmenting KLEE with precise

floating-point reasoning; and
5) KLEE-Pending [33], incorporating meta-search heuristics

to guide path exploration, thereby improving scalability
for larger projects.

In addition to DSE tools, we also include:
6) AFL++ [38], a state-of-the-art coverage-guided greybox

fuzzer. As fuzzing is a standard technique for bug detec-
tion, this comparison helps understand CONCOLLMIC’s
effectiveness relative to other common testing methods.
Evaluation Environment. Each campaign runs in a

Docker container with 2 CPUs and 8 GiB RAM. To facilitate
thorough path exploration, we allocate 48 h for testing real-
world subjects. For statistical significance, each tool is run
five times per subject. Since CONCOLLMIC is more costly
to run for an extended period due to LLM API calls, we
configure it to exit automatically if there is no increase in
internal coverage within 30 min. In total, the combined scale
of our evaluation exceeds one year of CPU time.

4.2. Support for Different Application Domains

4.2.1. Monolingual C/C++ Programs. We first compare
CONCOLLMIC against state-of-the-art DSE and fuzzing
tools on monolingual C/C++ programs, using branch cover-
age reported by GCov [39] as the unified metric.

Effectiveness. Figure 5 presents the GCov branch cov-
erage growth over time for each tool. Despite early termi-
nation, CONCOLLMIC achieves substantially higher branch
coverage than comparison tools after their full 48 h exe-
cution: 233%, 135%, 130%, and 115% more branches on
average than KLEE, KLEE-Pending, SymCC, and Sym-
San, respectively. Impressively, across most subjects, the
minimum coverage achieved by CONCOLLMIC exceeds
the maximum coverage of comparison DSE tools across
repetitions, demonstrating substantial improvement. With
statistical significance (Welch’s t-test, p-value < 0.05), CON-
COLLMIC outperforms all competing DSE tools on 7 sub-
jects (libsoup is unsupported by any other DSE tools).
The only exception is confetti, where CONCOLLMIC’s
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Figure 5: Monolingual C/C++ programs: GCov branch coverage growth over time. Solid lines and shaded areas represent
the mean and standard deviation. Dashed lines indicate where CONCOLLMIC exited due to 30-minute coverage stagnation.
libsoup and woff2 are partially supported by comparison tools due to their incomplete support for network input or C++.

performance is statistically indistinguishable from SymCC’s
with p-value = 0.2, but is still better than other DSE tools
with statistical significance.

When compared to 48-hour AFL++ campaigns, CON-
COLLMIC achieves 81% higher coverage on average across
all subjects. Specifically, CONCOLLMIC achieves higher
mean performance than AFL++ on 7 out of 8 benchmarks,
with only libyaml showing lower coverage. Besides, we
note that it is well-established that symbolic execution and
fuzzing are often complementary [4], where fuzzing excels
in high throughput, discovering unexpected program behav-
iors through carefully designed mutation operators [40], and
efficiently testing complex system-level software like OS
kernels [41], while symbolic execution can provide precise
program reasoning for complex constraint scenarios [1],
[3]. The two techniques are typically integrated in hybrid
approaches to achieve synergistic benefits [26], [42].

Our investigation reveals that CONCOLLMIC’s superior
performance is often due to a combination of high-level con-
straint reasoning and sophisticated environment handling.

CONCOLLMIC is able to reason symbolically in terms
of high-level constraints. Even for programs taking only file
and stdin inputs (e.g., libmatheval), CONCOLLMIC con-
sistently achieves better coverage through its agentic design.
Our design enables the LLM to grasp program semantics and
formulate constraints at proper abstraction levels, and deploy
an autonomous solving agent to bridge high-level reasoning
with precise computational tools through continuous reason-
ing and problem decomposition (as shown in Figure 4). This
differs from conventional symbolic executors that use ver-
bose implementation-level symbolic representation, which
places a burden on the solver.

CONCOLLMIC has its ability to handle diverse symbolic
sources that challenge conventional tools. Many programs
take not only file and stdin inputs, but also various envi-
ronmental inputs, for which existing tools offer incomplete
support at best. These environmental inputs can be as sim-

ple as additional command line parameters in oggenc, for
example, where we found that CONCOLLMIC can generate
precise combinations of arguments (“–resample -1” that
leads to an abort) and boundary values (e.g., “–resample
2147483647” that leads to a crash). In other cases, the
environmental inputs synthesized by CONCOLLMIC are
more complex, as we illustrate via the case study below.

Case Study on Symbolic Reasoning over Environments.
To illustrate CONCOLLMIC’s capability to reason about
and manipulate program environments, we present a case
study observed when testing bc. Figure 6a shows the target
branch CONCOLLMIC decides to cover (line 4), which
handles memory allocation failures in the bc_malloc func-
tion. This branch remains unexecuted under normal con-
ditions since malloc rarely fails in typical testing scenar-
ios, making it usually inaccessible to conventional DSE
tools and fuzzers. To reach this target, the Summarization
Agent identifies the path constraints: (1) The program must
call the bc_malloc function, which happens in various
parts of the program during initialization and operation;
(2) The call to malloc(size) within bc_malloc must return
NULL, indicating a memory allocation failure. Based on
these constraints, the Solving Agent autonomously devises
a sophisticated solution by constructing a test harness that
manipulates the program environment. As shown in Fig-
ure 6b, the Solving Agent implements a multi-step approach:
it creates a custom memory allocator wrapper in C (lines
2-31) that intercepts malloc calls and forces allocation
failure after a predetermined number of invocations. The
agent then compiles this wrapper into a shared library (lines
42-44) and employs LD_PRELOAD to inject it into the pro-
gram’s execution environment to replace the standard libc’s
malloc implementation (lines 46-48). This approach resem-
bles sophisticated fault injection techniques that developers
might employ manually for testing error-handling paths.
However, CONCOLLMIC accomplishes this entire process
entirely autonomously, demonstrating the LLM’s rich en-
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1 void * bc_malloc (size_t size) {
2 void *ptr = (void *) malloc (size);
3 if (ptr == NULL) {
4 // Unexecuted line 723 removed. Line cov: 0/1
5 }
6 return ptr;
7 }

(a) CONCOLLMIC chooses to target the branch on line 4.

1 # Create a malloc wrapper that will fail after a
certain number of calls

2 malloc_wrapper_c = """
3 #define _GNU_SOURCE
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <dlfcn.h>
7
8 static void* (* real_malloc)(size_t) = NULL;
9 static int malloc_count = 0;

10 static int fail_after = 30; // Fail after this many
calls

11
12 void* malloc(size_t size) {
13 // Initialize real_malloc on first call
14 if (real_malloc == NULL) {
15 real_malloc = (void* (*)(size_t))dlsym(RTLD_NEXT ,

"malloc ");
16 if (real_malloc == NULL) {
17 fprintf(stderr , "Error finding real malloc \\n");
18 return NULL;
19 }
20 }
21
22 malloc_count ++;
23
24 // Fail after a certain number of calls
25 if (malloc_count >= fail_after) {
26 return NULL; // Simulate allocation failure
27 }
28
29 return real_malloc(size);
30 }
31 """
32
33 def execute_program (): # The test harness produced

by ConcoLLMic ’s GenerateTest action
34
35 # Create a non -existent filename
36 non_existent_file = "non_existent_file.bc"
37
38 # Write the C code to a file
39 with open("malloc_wrapper.c", "w") as f:
40 f.write(malloc_wrapper_c)
41
42 # Compile the malloc wrapper
43 compile_result = subprocess.run(
44 ["gcc", "-shared", "-fPIC", "malloc_wrapper.c",

"-o", "malloc_wrapper.so", "-ldl"])
45
46 # Run bc with our malloc wrapper
47 env = os.environ.copy()
48 env["LD_PRELOAD"] = "./ malloc_wrapper.so"
49
50 result = subprocess.run(
51 ["./bc/bc", non_existent_file],
52 env=env
53 )
54 # ...

(b) CONCOLLMIC-generated test input (in harness.py) to cover
the above target branch. All the code is provided by the GENER-
ATETEST action (shown in Table 3).

Figure 6: Case study: CONCOLLMIC generates a test input
for bc to trigger the code path handling malloc failure,
demonstrating its ability to reason about and synthesize
complex program environments.

gineering capabilities in bridging high-level symbolic rea-
soning with precise environmental manipulation. The gener-
ated test input successfully triggers the previously unreach-
able branch, showcasing CONCOLLMIC’s effectiveness in
reasoning symbolically about program environments and
synthesizing complex environmental conditions that extend
beyond conventional input generation.

Generality. We highlight that our benchmarks com-
prise domains that are challenging for foundational lan-
guage models themselves. For example, oggenc and woff2
take binary inputs rather than textual content. Still, we
observe that our agentic framework enables the effective
generation of structured hexadecimal data. Our analysis of
CONCOLLMIC’s action logs reveals an iterative process
where the LLM understands and formulates theories about
binary structures, then validates and refines them through
experimental hex stream probing. Upon identifying satisfi-
able solutions, CONCOLLMIC synthesizes field values and
encodes them as valid binary data using Python scripts. This
synergy between LLM reasoning and computational tools
bridges the gap between abstract semantic understanding
and precise binary manipulation, compensating for inherent
language model limitations in processing raw binary data.

Additionally, CONCOLLMIC retains its competitive
edge across different categories of programs: (1) Network
applications like libsoup receive input data over the net-
work socket, which is not supported by any other tools in our
evaluation. In contrast, CONCOLLMIC attains meaningful
coverage increases on this program and even discovers a
new bug (see §4.3); (2) C++ projects like woff2, where
traditional tools encounter limitations due to incomplete
language and standard library support; and (3) Unseen
codebases like krep and confetti are not included in
claude-3.7-sonnet’s training corpus, but we do not notice
a degradation in performance and also discover two new
bugs in them.

4.2.2. Polyglot Programs. With zero additional configura-
tion, CONCOLLMIC fully supports polyglot systems com-
prising of more than one source programming language by
using a uniform execution abstraction. Our benchmark sub-
jects exercise complex cross-language interactions and logic
(see Table 4): ultrajson and jansi interface C backends
from Python and Java respectively; py4j facilitates access
to JVM objects from the Python runtime; and protobuf-go
augments a C++ compiler with a Go plugin.

Due to the lack of competing multi-language tools and
difficulty in tracking cross-language coverage, we report
CONCOLLMIC’s internal line coverage (validated with 94%
correlation to ground truth in §4.4.1). Figure 7 shows con-
sistent coverage growth across all subjects. On average,
coverage grows 3.5×, 8.2×, 1.9×, and 1.9× from the initial
test inputs, on ultrajson, jansi, py4j, and protobuf-go,
respectively. This demonstrates CONCOLLMIC’s ability to
explore unexplored behaviors in polyglot systems, which
is not supported by existing tools. Additionally, CON-
COLLMIC discovered previously unknown bugs in two of
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Figure 7: Multi-lingual programs: internal line coverage
growth over time, with mean and standard deviation. Dashed
lines indicate exits due to 30 minute coverage stagnation.

TABLE 5: Average per-program overhead and performance
(GCov branch coverage) on FP-Bench (26 programs total).

CONCOLLMIC KLEE-Float KLEE
Cov (%) Time (s) Cost ($) Cov (%) Time (s) Cov (%) Time (s)

77.87 464 1.05 64.81 46 37.67 0.03

these programs (see §4.3). The detailed cost statistics are
reported in §4.4.2.

4.2.3. Floating-Point Code. To assess constraint distillation
and solving capabilities on a challenging constraint solving
theory (C2), we evaluate CONCOLLMIC on FP-bench [12],
which consists of 30 synthetic floating-point programs (20-
242 lines each) carefully curated to expose symbolic rea-
soning challenges on floating points. We exclude four pro-
grams unsuitable for test generation (e.g., those verifying
non-termination). For this benchmark, we compare against
KLEE-Float [12], a specialized tool for the floating-point
domain, and also include its baseline KLEE to show the
importance of theory support.

Table 5 shows CONCOLLMIC achieves 20% and 107%
higher branch coverage than KLEE-Float and KLEE, respec-
tively. The results reveal two key insights about constraint
handling effectiveness:
1) Theory support for constraint distillation. The compar-

ison between KLEE and KLEE-Float demonstrates the
importance of theory-specific support. KLEE concretizes
all paths due to inadequate floating-point support, lead-
ing to many unsolvable constraints and achieving low
code coverage. Instead, KLEE-Float advances consid-
erably (73% improvement over KLEE) through dedi-
cated modeling and optimization for floating-point arith-
metic. Leveraging the LLM’s internal knowledge, CON-
COLLMIC naturally grasps floating-point semantics.

2) High-Level constraint reasoning. More importantly, de-
spite KLEE-Float’s specialized theory support, CON-
COLLMIC still outperforms it in terms of code cover-
age by over 20%. Manual log inspection reveals that
KLEE-Float struggles with complex data structures con-
taining floating-point numbers, which complicates tra-

ditional constraint distillation and stresses the solver, a
fundamental challenge faced by existing tools. Instead,
CONCOLLMIC addresses this challenge by working on
high-level constraint reasoning that captures program
semantics, coupled with an autonomous solving agent
to understand and solve these constraints, as illustrated
in §2.1 and Figure 4. While CONCOLLMIC’s test gen-
eration is slower than KLEE-Float, our evaluation on
real-world large programs shows this overhead stems
primarily from LLM query latency (see §4.4.2), which
disproportionately impacts smaller benchmarks.

4.3. Bug Discovery

Beyond code coverage improvement, we evaluate CON-
COLLMIC’s bug detection capabilities against comparison
tools. To enable systematic and fair bug detection, we in-
strument all C/C++ benchmarks (Table 4) with AddressSan-
itizer [43] and UndefinedBehaviorSanitizer [44] (ASan and
UBSan) to capture memory safety and undefined behavior
violations, then use program crashes as the primary detec-
tion signal. For multi-language benchmarks, we detect bugs
through runtime exceptions and crashes.

In total, CONCOLLMIC uncovered 11 previously un-
known bugs across both the latest C/C++ and multi-language
benchmarks, as detailed in Table 6. Each discovered bug
is validated through concrete execution using a Python
harness (in harness.py, as shown in Figure 6b) that captures
all constraints (including inputs, environment settings, pro-
gram arguments, etc.) for reproducible verification, ensuring
no false positives. Hence, manual effort is limited to bug
deduplication, which follows the same process as in existing
testing tools by analyzing sanitizer or GDB stack traces.

Nine vulnerabilities have been confirmed or fixed by
the developers. Bug #8 in libsoup has been assigned the
identifier CVE-2025-4945, while others are undergoing the
CVE application process after a coordinated disclosure.
These subjects are well-tested production software, with
four projects integrated into OSS-Fuzz [35] for continu-
ous testing, underscoring CONCOLLMIC’s effectiveness in
reaching logic that existing tools struggle with. Notably,
CONCOLLMIC also uncovered previously unknown bugs in
polyglot systems like jansi and ultrajson, which involve
complex interactions across language boundaries and require
cross-language constraint reasoning.

Most bugs discovered by CONCOLLMIC are also hard
to trigger with other tools—KLEE, KLEE-Pending, SymCC,
SymSan, and AFL++ exposed only 1, 1, 4, 5, and 3
of them, respectively. Among these baseline tools, only
KLEE-Pending identified one additional bug beyond CON-
COLLMIC’s discoveries, specifically in krep involving an
invalid pointer passed to realloc. Our examination reveals
that CONCOLLMIC also reached the same error code lo-
cation, but did not construct the specific malicious input
values needed to trigger that particular bug. This stems
from CONCOLLMIC’s current design, where the execution
abstraction (e.g., Figure 3) provided to the LLM primarily
focuses on coverage information to guide systematic path
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TABLE 6: Previously unknown vulnerabilities exposed by CONCOLLMIC. Six of them cannot be found by existing tools.

# Subject Bug Description Status
1 oggenc Null pointer dereference in oggenc.c when encoding an audio file with invalid format Fixed
2 oggenc Signed integer overflow in oggenc.c when resampling the input audio Reported
3 oggenc Signed integer overflow when processing WAV file with malformed INFO chunk size Fixed
4 oggenc Memory leak in wav_open() when processing WAV files with invalid header structure Fixed
5 krep Incorrect handling of arguments PATTERN and STRING_TO_SEARCH in the String Mode -s Fixed
6 libyaml Memory leak due to missing yaml_parser_delete() in case of invalid UTF-8 input Fixed
7 libyaml Memory leak due to missing yaml_parser_delete() in case of incomplete UTF-8 octet sequence Confirmed
8 libsoup Integer overflow in soup_cookie_parse() when parsing a cookie with malformed “expired” value Fixed
9 confetti Memory leak in _readstdin.c and parse.c after parsing a partially malformed configuration input Fixed

10 ultrajson Wrong exception handling in python/JSONtoObj.c when parsing a JSON string with nested keys Fixed
11 jansi ClassCastException when processing ANSI escape sequences with quoted string arguments Reported

exploration rather than explicitly instructing it to adopt an
adversarial perspective for generating malicious inputs at
potentially vulnerable code locations, though it may au-
tonomously adopt such strategies based on its own rea-
soning. Incorporating explicit adversarial input generation
strategies at strategic code locations represents an important
direction for future research.

Through manual inspection, we find that bugs found only
by CONCOLLMIC often require satisfying complex con-
straint combinations that challenge conventional tools. For
example, bug #3 is only triggered with a precisely corrupted
WAV file INFO chunk, bug #5 occurs only in a particular
mode set by a CLI argument, while bug #8 involves both
HTTP message parsing and arithmetic constraints on mal-
formed cookie timestamps, highlighting CONCOLLMIC’s
capability in handling multi-faceted constraints.

4.4. Evaluating CONCOLLMIC’s Design

4.4.1. Instrumentation Stage. First, we evaluate the cost,
scalability, and fidelity of CONCOLLMIC’s instrumentation
module shown in §3.2.

Cost. Across all benchmarks, the instrumentation cost
is $0.56 per 1 kLoC on average, with a detailed breakdown
shown in Table 7. Costs vary depending on the program’s
language and logic complexity. As discussed in §3.2, we
highlight that the full instrumentation represents a one-time
cost per project, as CONCOLLMIC’s instrumentation design
allows for incremental re-instrumentation of only modified
functions, reducing ongoing costs as the program evolves.

Scalability. As shown in column “Max. File” in Table 7,
CONCOLLMIC has successfully processed individual files
of up to 3,989 lines through function-granular instrumenta-
tion. The instrumentation design of decomposing large files
into manageable syntactically-coherent chunks demonstrates
scalability across diverse and complex projects.

Fidelity. CONCOLLMIC’s internal coverage mainte-
nance relies on the instrumentation module and is crucial for
downstream testing. To this end, we empirically assess its
fidelity against GCov on all real-world C/C++ benchmarks.
1) Line Coverage Correlation. First, we measure the overall

correlation. We compute the Pearson’s correlation coef-
ficient between CONCOLLMIC’s internal line coverage

and GCov line coverage, as shown in Figure 8a. A mean
and median correlation of 94% across all benchmarks
indicates a very strong linear relationship. The observed
divergence stems from two main factors: (i) a small
portion of control flow constructs remain uninstrumented
by the LLM. (ii) GCov excludes variable declarations
and assignments (e.g., line 7 in Figure 1) while CON-
COLLMIC includes them if they are wrapped by flow-
tracing statements. Despite these differences, the con-
sistently high correlation shows that our instrumentation
accurately captures program execution flow.

2) Validation Accuracy. CONCOLLMIC’s validation check
(⑤ in Figure 2) verifies if newly-generated test inputs
cover their intended target lines—a criterion for retaining
them. Since target lines are typically few, evaluating
this validation check’s accuracy is more fine-grained.
Figure 8b presents the results of this validation across the
union of all generated test inputs across repetitions and
benchmarks, where columns represent CONCOLLMIC’s
internal predictions and rows represent GCov coverage
status. Our validation achieves a precision of 84% and
an F1-score of 81%, indicating that 84% of positive
predictions are correct while striking a balance between
precision and recall. Importantly, CONCOLLMIC uses a
dual-criterion approach that also retains a test input when
it produces new global coverage. This dual-criterion ap-
proach, combined with highly correlated line coverage
tracking (94%), alleviates the issue of overlooking valu-
able inputs (false negatives). This is because flipping new
branches often results in new code being covered, which
can be captured by an increase in overall line coverage,
even when specific target lines are missed.

4.4.2. Testing Stage. We next evaluate the concolic testing
stage shown in §3.3. Specifically, we evaluate the cost,
throughput, and breakdown of LLM invocations during test-
ing. We also conduct a case study to gain a deeper under-
standing of CONCOLLMIC’s test input generation process.

Cost and Throughput. On average, CONCOLLMIC
spends $0.21 and 69 seconds to generate each test input. Ta-
ble 7 presents the detailed runtime statistics (column “Avg.
Time”), total generated inputs (column “Avg. # Inputs”),
and LLM costs (column “Avg. Cost”) for each subject, with
all statistics aggregated across repetitions. In terms of com-
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TABLE 7: CONCOLLMIC’s detailed instrumentation and testing statistics (aggregated across repetitions) for each benchmark.
FP-Bench reports the aggregated data over all 26 programs. “# Instr. LoC” is the total number of lines of code instrumented.
“Avg. Cost” is calculated per 1 kLoC for instrumentation or per test input for testing. “Avg. Time” is CONCOLLMIC’s
testing runtime per subject with early termination triggered after 30-min coverage stagnation. “Total Cost” is the sum of
(i) instrumentation cost, and (ii) the average testing cost aggregated across repetitions.

Subject Stage-1: Instrumentation Stage-2: Testing Total
Cost ($)# Instr. LoC Max. File (LoC) Avg. Cost ($) Avg. # Inputs Avg. Time (h) Avg. Cost ($)

woff2 11,144 2,491 0.57 171 4.02 0.28 73.77
oggenc 8,620 1,961 0.52 257 4.03 0.18 66.01
bc 1,888 2,703 0.24 281 4.56 0.18 48.50
libmatheval 844 1,991 0.29 129 2.55 0.20 28.01
libyaml 3,592 3,598 0.66 248 5.81 0.26 74.43
libsoup 9,744 3,989 0.64 97 1.87 0.35 73.02
krep 1,820 3,945 0.89 216 3.85 0.17 43.72
confetti 678 2,035 1.19 119 2.12 0.14 20.23
ultrajson 904 1,001 0.27 255 5.09 0.21 54.65
jansi 2,002 973 0.41 255 4.17 0.21 57.33
py4j 2,084 1,024 0.29 134 3.15 0.27 39.54
protobuf-go 2,080 3,238 1.06 309 8.13 0.28 93.67
FP-Bench 670 242 0.31 334 3.37 0.08 27.33
Avg (Total) (46,070) 2,245 0.56 (2,805) 4.06 0.21 53.86
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Figure 8: Instrumentation fidelity on C/C++ Benchmarks.

putational resources, CONCOLLMIC is very lightweight:
14% of one CPU core (2.7GHz) and 266MB RAM is
consumed on average, indicating that CPU and memory
are not performance bottlenecks. However, our approach
is substantially slower than conventional tools due to the
LLM’s inherent latency. By comparison, SymCC generates
700+ unique inputs on bc in 60 seconds, being 800× faster.
Nonetheless, our approach prioritizes test input quality over
quantity. This quality-oriented strategy yields remarkable
effectiveness: to achieve the final branch coverage attained
by the best-performing comparison DSE tools on each
subject after their 48 h testing, CONCOLLMIC requires only
31 test inputs on average, costing approximately $6.1 and
taking just 32 min. This reflects CONCOLLMIC’s ability to
generate highly targeted inputs, effectively reaching program
paths that are out of reach for traditional tools (see §4.2.1).
As a research prototype, our tool currently prioritizes cor-
rectness and generality over cost efficiency.

LLM Invocation Breakdown. Figure 9 shows the cost
and frequency of different LLM components, including ini-
tial instructions and subsequent actions of the two LLM
agents for constraint summarization (SUM) and solving
(SOL). Overall, SUM-INITIAL and SUM-CODEREQUEST
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Figure 9: The cost (top) and frequency (bottom) of differ-
ent LLM invocations across benchmarks, from either the
summarization (SUM) or solving (SOL) agents. SUM/SOL-
INITIAL refers to the initial input and instructions.

are the most expensive components, accounting for 23.0%
and 22.2% of total cost, as their cost scales linearly with
input execution abstraction size or requested code size.
Notably, for the solving agent, SOL-THINK and SOL-
EXECUTECODE represent significant portions, accounting
for (8.4%, 15.0%) and (13.9%, 17.9%) of (cost, frequency),
respectively. This relatively considerable cost of SOL-
THINK—primarily reasoning and planning—demonstrates
the LLM’s extensive deliberation when tackling complex
constraint-solving problems.

Our log analysis shows the LLM typically follows a
think-execute-validate pattern: after each THINK action, it
frequently invokes EXECUTECODE to compute or validate
solutions, then returns to THINK to refine its approach iter-
atively. This iterative workflow reflects a key advantage of
our agentic design: the LLM engages in multi-step reasoning
with continuous validation, increasing its trustworthiness in
complex analysis scenarios.
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We observe significant variation in action selection
across subjects. For example, QUERYSMT is repeatedly
employed for woff2, yet rarely for other subjects. This
is because woff2’s strict binary format requires satisfying
multiple interrelated constraints across fields, a task better
suited for SMT representation. This reflects the autonomy
of CONCOLLMIC in carrying out context-aware workflows
based on program semantics and constraint complexity.

Failure Case Analysis. To understand when and why
CONCOLLMIC fails to generate effective test inputs, we
conducted a detailed manual analysis of 50 randomly sam-
pled failure cases from oggenc. Specifically, a test gener-
ation iteration is considered successful when the generated
input reaches the target branch selected by the Summariza-
tion Agent, and a failure otherwise. Our analysis reveals five
primary categories of failures:
1) Infeasible Paths (36%): The selected target branches are

inherently unreachable under the current program config-
uration, such as those involving conditional compilation
directives (e.g., #ifdef) that require recompilation.

2) Bug-Induced Crashes (30%): The program encounters a
bug before reaching the intended target location, causing
premature termination.

3) Summarization Errors (24%): The Summarization Agent
generates incorrect or incomplete path constraints that
prevent reaching the target branch.

4) Solving Inconsistencies (6%): The Solving Agent pro-
duces test inputs that are inconsistent with the path
constraints summarized by the Summarization Agent.

5) Execution Timeouts (4%): The program’s execution ex-
ceeds our 10-second timeout limit, typically due to
computationally expensive operations triggered by the
generated input.

5. Discussion and Future Work

Cost and Hybrid Integration. CONCOLLMIC is more
expensive than traditional tools due to the high cost of
LLM invocations. At the same time, it highly favors qual-
ity over quantity, as described at length in §4.4. Future
work could investigate suitable hybrid approaches (e.g.,
combining CONCOLLMIC with fuzzers or conventional en-
gines) to achieve the desired trade-off in terms of cost and
effectiveness. Akin to established concolic executors [8],
[32], CONCOLLMIC could also be employed in conjunction
with fuzzing for higher throughput and lower cost [26],
[42]. However, the integration needs to be carefully de-
signed since fuzzers like AFL++ [38] are often language-
specific (applicable to C/C++ only) and, more importantly,
lack complete environmental manipulation support (e.g.,
CONCOLLMIC-generated test cases involving environmen-
tal manipulation as in Figure 6b cannot directly be used
by AFL++ currently). Hence, finding a suitable integration
remains an area for future work.

Model Context Window. Our approach is limited by
the size of the context windows of state-of-the-art lan-
guage models. While the context window size continues to

grow [45], it is possible that this window could be exhausted
for very large programs. In our evaluation of 12 real-world
programs, most containing tens of kLoC, we did not observe
any errors relating to Claude Sonnet 3.7’s 200K token
context window. For larger programs that generate extensive
execution traces, while simple trace truncation to a prefix
serves as a practical workaround, CONCOLLMIC can be
further extended to employ incremental trace summarization
that processes traces in sequential segments.

Unsoundness of LLMs and Our Mitigation. Our ap-
proach is also limited by the inherent unsoundness of LLMs
(i.e., LLMs may give factually wrong answers to queries).
This unsoundness means that concolic execution based on
LLMs cannot be used for program verification. Our design
combats such unsoundness in three ways:
1) Input grounding with concrete execution: We anchor

LLM reasoning in concrete execution traces through a
carefully-designed execution abstraction that captures
program behavior and coverage information, reducing
hallucination by grounding symbolic reasoning in ob-
servable facts;

2) Output validation: We implement comprehensive valida-
tion of LLM outputs, including (a) instrumentation vali-
dation and (b) end-to-end reachability validation in every
iteration, filtering out incorrect reasoning to prevent error
propagation;

3) Tool-augmented reasoning: Our agentic framework
equips LLMs with trusted external tools—e.g.,
CODEREQUEST for code context understanding
and EXECUTECODE for precise computation—enabling
grounded feedback when reasoning.
As a result, we see consistent coverage growth across

diverse subjects (§4.2), and the internal coverage based on
our instrumentation correlates strongly with ground-truth
coverage (§4.4.1).

Data Leakage. Our agentic concolic executor, CON-
COLLMIC, is instantiated with Claude Sonnet 3.7, which
has been trained on many open-source projects. Thus, it
is possible that our evaluation benchmarks overlap with
its training data, and this data leakage could inflate our
results. To mitigate this, we included two projects (krep and
confetti) which were not publicly available until after the
training cut-off of the model [36]. In §4, we do not see any
qualitative difference in the results on these two subjects.

Adversarial Robustness. A natural concern for LLM-
based systems is whether malicious actors could deliberately
induce hallucinations in critical reasoning processes, poten-
tially causing incorrect path constraints or solutions. CON-
COLLMIC’s end-to-end reachability validation, adapted in
every iteration, prevents error propagation—any test input
failing to reach its intended target or increase coverage
is discarded, containing the impact of potential adversar-
ial manipulation. While such issues may still cause CON-
COLLMIC to miss bugs—a limitation shared with other
testing approaches—we see this as low impact relative to
other applications of LLMs such as code generation, where
hallucinations can introduce new bugs into the codebase.
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Trade-Off between High- and Low-Level Constraints.
High-level constraints (e.g., natural language) offer greater
generality and semantic clarity, while low-level constraints
(e.g., SMT formulas) provide implementation-specific pre-
cision and formal rigor. Our current design allows LLMs to
autonomously select appropriate abstraction levels based on
context and problem complexity. Despite the effectiveness
of our flexible, semantics-oriented design, developing prin-
cipled strategies to select an appropriate abstraction level
represents a promising direction for future research.

6. Related Work

Symbolic and Concolic Execution. Symbolic execution
has been extensively studied since its inception [22], [23],
[24], and DART [6] introduced concolic execution, the
paradigm on which CONCOLLMIC is based. KLEE [3],
[20] remains the leading non-concolic SE tool in widespread
use. We include direct comparison to modern compiler-
based concolic executors [8], [32] and the KLEE family [3],
[12], [33]. Prior attempts to address (C1) include environ-
mental modeling [3], [27] and the adoption of hypervisor
embedding [46]. To address (C2), the research commu-
nity has proposed numerous constraint solving optimization
techniques, such as expression simplifications [10], coun-
terexample caching [3], [47], [48], rewriting complex array
constraints [11], interval solving [49], as well as incomplete
and gradient-based solvers [18], [50], [51]. Compared to
existing work in this area, CONCOLLMIC instead builds
on LLMs’ rich capabilities to construct the first concolic
executor that is both language- and theory-agnostic.

Machine Learning for Symbolic Execution. Prior
work has explored integrating machine learning techniques
into DSE, primarily to replace static heuristics with learned
components. MLB [52] applies machine learning to path
feasibility analysis, while Learch [53], Cottontail [54], and
SyML [55] propose learning-based strategies for path se-
lection and exploration. These approaches are orthogonal
to our core contributions of addressing symbolic modeling
complexity and constraint solving scalability.

LLM-Assisted Software Testing. LLMs have shown
initial promise in the broader domain of test generation
techniques beyond DSE, such as in unit test generation [56],
[57] and fuzzing [58], [59], [60]. In these approaches,
LLMs are used to analyze source methods and to extract
inputs or state-space specifications. All of these approaches,
however, only use static prompt-engineering, rather than
CONCOLLMIC’s agentic framework or symbolic reasoning.

LLM-Reasoning. Recently LLM agents [16] and “Rea-
soning Models” have outperformed traditional training [61]
or inference-time prompting [62], [63] on challenging soft-
ware engineering [64] and mathematics [14] benchmarks.
CONCOLLMIC continues this line of research. However,
in this work, we assess LLM agents’ ability to conduct
symbolic reasoning on complex real-world software, which
we see as complementary to mathematical reasoning tasks.

7. Perspectives

Software security is of vital importance, increasingly so
with the rise of agentic, AI-assisted programming; the recent
unprecedented growth in AI-generated code necessitates
highly automated approaches to both prevent vulnerabilities
and reduce the trust-deficit in these systems [65]. It is
thus critical that the tools and techniques we propose as
researchers can also be applied in the real world. Indeed,
concolic execution has long been at the intersection of the
theoretical and the practical—the symbolic and the concrete.
In this work, we propose CONCOLLMIC and the paradigm
of agentic concolic execution. Our results show that LLM
agents —with access to planning and tools—are remarkably
capable of program instrumentation, trace summarization,
and symbolic constraint solving. In particular, we find that
concrete executions and an agentic framework help ground
LLMs to produce fewer faulty answers. Our work can
help navigate the tension between "programming at scale"
and "programming with trust" in future AI-assisted pro-
gramming [66], where AI agents may significantly enable
both code generation and code validation. We believe that
CONCOLLMIC can serve as a foundational framework for
future research, enabling more adaptive, context-aware, and
scalable symbolic execution systems. Beyond software se-
curity, we see this as a compelling opportunity to explore
and expand the boundaries of what kind of reasoning LLM
agents are truly capable of, especially in domains requiring
precise, structured, and symbolic analysis.
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Appendix A.
Effect of LLM-Based Test Input Scheduling

TABLE 8: Internal line coverage for polyglot benchmarks
with different scheduling strategies.

Subject CONCOLLMIC CONCOLLMICDFS CONCOLLMICRandom

ultrajson 2093 1935 1616
jansi 986 930 826
py4j 1113 1148 746
protobuf-go 4060 3924 3994
Average 2063 1985 1796

To assess the effect of the LLM-based test input schedul-
ing strategy, we conduct a preliminary ablation study by
creating two CONCOLLMIC variants: CONCOLLMICDFS

and CONCOLLMICRandom. These variants replace the LLM-
based selection with classical search heuristics, selecting
the next test input for exploration either as the most re-
cent or randomly. The final internal line coverage achieved
by different variants is shown in Table 8. From the re-
sults, we can see that (i) CONCOLLMIC’s LLM-based
selection strategy is competitive with the best performance
of traditional search heuristics (DFS and Random), and
(ii) according to Welch’s t-test, the average p-value for
comparing CONCOLLMIC against CONCOLLMICDFS and
CONCOLLMICRandom is 0.63 and 0.42, respectively. This
suggests their relative difference is far from being statisti-
cally significant, and CONCOLLMIC’s LLM-based selection
strategy does not contribute to its overall effectiveness. Since
search strategy is a long-standing problem in DSE and is not
our main focus, we leave finding optimal selection strategies
for agentic concolic execution as future work.
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Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

The paper develops a novel approach that leverages large
language model (LLM) agents to address two key challenges
of concolic execution: program environment modeling and
path constraint solving. The authors implement this ap-
proach in a tool called CONCOLLMIC and demonstrate its
effectiveness through an empirical evaluation on different
types of programs.

B.2. Scientific Contributions

• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field
• Creates a New Tool to Enable Future Science
• Identifies an Impactful Vulnerability
• Establishes a New Research Direction

B.3. Reasons for Acceptance

1) The paper leverages LLM agents to address long-
known issues in concolic execution (i.e., program en-
vironment modeling and path constraint solving) and
therefore provides a valuable step forward in this area.

2) The authors create a new tool called ConcoLLMic that
enables future science. The author has demonstrated
the effectiveness of ConcoLLMic with an extensive
evaluation.

3) ConcoLLMic identifies a non-trivial number of new
vulnerabilities on real-world software, further showcas-
ing its practical usefulness.

4) Given its novelty and timeliness, the paper could help
establish a new research direction on integrating LLM
agents into program analysis workflows.

B.4. Noteworthy Concerns

1) The set of programs used for evaluation seems limited,
as they are small and may not be drawn from a standard
benchmark suite. This raises questions about the gen-
eralizability and broader applicability of the proposed
approach.

2) The paper lacks ablation studies to illustrate the trade-
off between high-level semantic reasoning and low-
level precision.

3) The reviewers also expressed concerns about the repro-
ducibility of the experimental results, given that LLMs
are non-deterministic.

Appendix C.
Response to the Meta-Review

We thank anonymous reviewers for their constructive
feedback and the shepherd for the meta-review. We ac-
knowledge the noteworthy concerns and provide additional
responses as follows.

1) Our C/C++ benchmark selection follows estab-
lished practices in the field: except for krep and
confetti (which serve the specific purpose of eval-
uating data leakage effects), all benchmarks are drawn
from prior works in symbolic execution and fuzzing
research. Specifically, woff2 is used in SymSan [32]
and integrated in OSS-Fuzz [35]; oggenc (vorbis)
is used in SymSan [32] and KLEE-Pending [33] and
integrated in OSS-Fuzz [35]; bc is used in KLEE-
Pending [33] and Empc [67]; libmatheval is used
in KLEE-Float [12]; and libyaml and libsoup are
integrated in OSS-Fuzz [35]. More importantly, our
benchmark selection was strategically designed to test
CONCOLLMIC’s capabilities across diverse constraint
theories and challenging scenarios, as shown in Table 4
with detailed Inputs and Functionality descriptions and
corresponding explanations in §4.1. We acknowledge
the current limitation regarding large program process-
ing due to model context window constraints. We have
discussed this concern and provided concrete extension
strategies to address this limitation in §5.

2) Our current design introduces high-level semantic con-
straint reasoning as a novel paradigm, allowing flex-
ible constraint representation rather than being re-
stricted to verbose implementation-level formulations,
and demonstrates its feasibility and effectiveness. We
acknowledge that systematic exploration of trade-offs
between high-level semantic reasoning and low-level
precision represents an important direction for future
research, as discussed in §5.

3) We acknowledge this concern due to the inherent non-
determinism of LLMs. To foster reproducibility and
enable future research in this area, we have open-
sourced our code at https://github.com/ConcoLLMic/
ConcoLLMic and prepared a detailed user guide and
documentations at https://ConcoLLMic.github.io. We
will continuously maintain and update these resources.
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