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Abstract
Buggy behaviors in concurrent programs are notoriously elu-
sive, as they may manifest only in few of exponentially many
possible thread interleavings. Randomized concurrency test-
ing techniques probabilistically sample from (instead of enu-
merating) the vast search space and have been shown to be
both an effective as well as a scalable class of algorithms
for automated discovery of concurrency bugs. In this work
we focus on the key desirable characteristic of black-box
randomized concurrency testing algorithms — uniformity
of exploration. Unfortunately, prior randomized algorithms
acutely fall short on uniformity and, as a result, struggle to ex-
pose bugs that only manifest in few, infrequent interleavings.
Towards this, we show that, indeed, a sampling strategy for
uniformly sampling over the interleaving space, is eminently
achievable with minimal additional information for broad
classes of programs. Moreover, when applied to a carefully se-
lected subset of program events, this interleaving-uniformity
strategy allows for an effective exploration of program behav-
iors. We present an online randomized concurrency testing
algorithm named Selectively Uniform Random Walk (SURW)
that builds on these insights. SURW is the first of its class to
achieve interleaving-uniformity for a wide class of programs,
or an arbitrary subset of events thereof. This property trans-
lates to effective behavioral exploration should a subset with
desirable characteristics be selected. Extensive evaluation on
leading concurrency benchmarks suggests SURW is able to
expose more bugs and significantly faster than comparable
randomized algorithms. In addition, we show that SURW is
able to explore both the space of interleavings and behaviors
more uniformly on real-world programs.

CCS Concepts: • Software and its engineering→ Soft-
ware verification and validation; • Security and privacy
→ Formal methods and theory of security.
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1 Introduction
Concurrency is essential to ensure responsiveness and per-
formance of modern software programs. However, these
benefits come at a cost of increased complexity and result-
ing concurrency-related bugs. These bugs are notoriously
difficult to expose and reproduce, yet they can have dire con-
sequences for the safety, security and availability of critical
software systems [14, 29, 59]. While many developers turn
to stress testing to find concurrency bugs, such methods
are often insufficient because their effectiveness is highly
dependent on the non-deterministic OS scheduler.
In response, Controlled Concurrency Testing (CCT) has

emerged as a popular testing paradigm that addresses these
challenges and is seeing increasing adoption in industry
settings [12, 56]. CCT tools aim to uncover buggy program
behaviors that may only exhibit under specific orderings
of thread executions, called interleavings. To explore these
interleavings, CCT tools typically serialize the execution by
allowing only one thread to execute one atomic event at a
time, allowing for greater control during testing. The number
of possible interleavings is typically exponentially larger
than the number of instructions in the underlying program;
thus, a key challenge in designing effective CCT algorithms,
lies in developing an effective exploration algorithm for the
vast interleaving space.

Systematic testing approaches such as model checkers [18,
27, 43, 63] attempt to exhaustively traverse the space, and
often employ techniques such as reduction [22, 57], bounding
exploration to a small subset of behaviors, such as those
with a small number of preemptive context switches [43] or
short delays [18]. Unfortunately, in practice the enumerative
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search algorithm may only explore a small proportion of
similar interleavings in the allotted time-budget, especially
for large software systems.

In contrast, randomized testing [6, 52, 63, 69, 70] approaches
sample from the space to witness more diverse interleavings.
As with their systematic counterparts, randomized testing
algorithms also employ reduction techniques [65, 70] or ex-
plore only bounded sub-spaces which are considered more
likely to harbor bugs [6, 63]. While these algorithms are
not able to prove the absence of bugs, some provide proba-
bilistic guarantees for observing buggy behaviors [6, 70]. In
practice, these randomized algorithms tend to outperform
systematic approaches [34, 61] while remaining scalable to
large, real-world software.
In this work, we consider a key desirable objective of

randomized CCT algorithms fundamental for effective ex-
ploration of the underlying search space — uniformity. In
absence of prior knowledge about the bug or the program
characteristics, the optimal exploration strategy should sam-
ple all interleavings with equal probability, i.e., must be uni-
form. Yet existing approaches of choosing each thread or
each context switch point with equal probability do not yield
uniformity, even for relatively simple programs (c.f. Section
2.1). Our first key insight is that interleaving-uniformity is
eminently achievable for broad classes of programs. In fact,
it can be attained in an efficient online algorithm, with only
minimal information about the program under test, namely
an accurate estimate of the number of events on each thread.

At the same time, we also observe that uniformity over the
interleaving space does not necessarily translate to effective
exploration of program behaviors. Often, many programs
behaviors are represented by proportionally more (or fewer)
interleavings than others, resulting in the over (or under)-
sampling of such behaviors by an otherwise interleaving-
uniform algorithm. Towards this, we present our second key
insight — uniform sampling on the space of interleavings of
an appropriately selected subset of program events can in fact
serve as a good proxy for uniform exploration of program
behaviors.
In this paper, we present a new randomized CCT algo-

rithm, Selectively Uniform Random Walk (SURW), which ex-
ploits the aforementioned insights. SURW is the first random-
ized CCT algorithm that achieves interleaving-uniformity for
a pre-selected subset of program events. As a result, given
the full subset of all events, SURW samples all interleavings
uniformly; given a subset of events that are likely key in de-
termining the behavior of the program, it effectively explores
program behaviors. We compare SURWwith other randomized
CCT algorithms qualitatively (c.f. Section 3.3), and also pro-
vide strong guarantees for finding concurrency bugs under
several common concurrency design patterns (c.f. Section
3.4). SURW achieves selective uniformity by making eager
scheduling decisions with weighted random walk, where the
weights are determined to be estimates of the number of

events remaining to be scheduled, in each thread. The se-
lected subset of events relevant for achieving selectivity can
either be automatically inferred or manually provided as an
input by a domain expert, thereby allowing complete control
of the sampling granularity and focus.
We evaluate SURW extensively on leading CCT bench-

marks [7, 30, 61]. Experiments show that SURW is able to
(1) expose more bugs and (2) trigger bugs with fewer sched-
ules than comparable randomized algorithms. We note that
SURW achieves these results even with a simple heuristic for
identifying promising selected event subsets. These results
suggest that SURW has further potential to be combined with
more sophisticated subset selection procedures. In our case
study, we also find that SURW can explore the space of inter-
leavings and behaviors better than comparable algorithms
for real-world programs, both in terms of diversity and even-
ness.

In summary, we claim the following contributions:

• Wepropose interleaving-uniformity over selected events
as a principled way to sample concurrent behaviors.
• We introduce the first randomized testing algorithm
that guarantees interleaving uniformity for broad classes
of programs, or for arbitrary parts thereof.
• We evaluated our approach extensively on leading
benchmarks and real-world programs to demonstrate
its efficacy in bug finding and space exploration.

2 Motivation
In this section, we discuss selective uniformity as a key desir-
able property for randomized CCT algorithms (Section 2.1
and Section 2.2), discuss prior algorithms and how they fare
on this property, and also present insights behind how our
SURW algorithm is structured.

2.1 Uniformity
The goal of randomized concurrency testing algorithms is to
find bugs that arise from multi-threaded program behaviors.
Without knowing a priori which of the many possible pro-
gram behaviors trigger a bug, these algorithms should aim
to sample such behaviors uniformly. Unfortunately, unique
behaviors are highly program-dependent, and are impossible
to predict or even count for complex programs [46, 64]. How-
ever, each unique program behavior must correspond to at
least one interleaving for sequentially consistent programs.
Additionally, unlike program behaviors, program interleav-
ings can be sampled uniformly for broad classes of complex
programs. A principled randomized CCT algorithm should
strive to at least achieve interleaving uniformity.
Consider the illustrative program in Figure 1. It consists

of two threads, each with 5 atomic events on a shared vari-
able 𝑥 . At each step, either 0 or 1 is appended to the binary
representation of 𝑥 , depending on which thread it is on. This
program has

(10
5
)
= 252 possible interleavings and the same
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1 void thread_A () {

2 x = x<<1;

3 x = x<<1;

4 x = x<<1;

5 x = x<<1;

6 x = x<<1;

7 }

1 void thread_B () {

2 x = x<<1+1;

3 x = x<<1+1;

4 x = x<<1+1;

5 x = x<<1+1;

6 x = x<<1+1;

7 }

Figure 1. Two threads performing atomic bit-shifts on a
shared variable 𝑥 . URW samples each result of 𝑥 uniformly.

number of behaviors, which in this case is determined by the
value of the shared variable 𝑥 at the end of an execution. De-
spite the simplicity of this relatively trivial example, existing
randomized testing algorithms [6, 70] perform poorly on the
uniformity metric, and are heavily biased in practice when
sampling program interleavings. We discuss some of these
next. At a high level, these algorithms work in an online
manner, executing the program one event at a time. At each
point during the execution, such algorithms typically pick
one of the enabled (i.e., unblocked) threads, either determin-
istically (by means of, say, assigning priorities) or randomly
by picking an enabled thread according to some probability
distribution.
Random walk. This algorithm is the simplest randomized
CCT algorithm and works by scheduling, at each point, each
of the enabled threads to execute next, with equal probability.
This simplistic uniformity on possible scheduling decisions
at each point, however, does not translate to uniformity over
the space of interleavings! For the program in Figure 1, the
distribution on the resulting interleavings generated by Ran-
dom Walk is highly skewed — the two most likely interleav-
ings1 are sampled with probability 2−5, whereas a majority
of interleavings are sampled with probability only 2−9. We
note that this disparity gets exacerbated in larger programs
with uneven thread lengths. Figure 2 (middle) shows the
empirical distribution of interleavings sampled by Random
Walk in this example, with a few interleavings being sampled
with much higher frequency than others.
POS. Partial Order Sampling (POS) [70] employs reduction
to reduce the bias induced due to equivalent interleavings
on top of Random Walk. Operationally, it assigns a single
random priority per thread to increase the chance of con-
current accesses being simultaneously enabled (i.e., racing),
and, when that happens, POS chooses each racing event
with equal probability. In our running example (Figure 1)
though, all events race with each other and thus POS chooses
a random thread at each step, degrading it to RandomWalk.
PCT. The Probabilistic Concurrency Testing (PCT) fam-
ily of algorithms [6, 44–46] cater to bugs of shallow depth,
parametrized by a parameter 𝑑 , and operationally impose

1The two most likely interleavings are 𝑥 = 31 or 31 × 25. The least likely
ones end with 0b10 or 0b01. There are 2 ·

(8
4
)
= 140 such results.

Figure 2. Histogram of the value of 𝑥 in Figure 1 sampled
by URW (left), Random Walk (middle) and PCT-10 (right).

only 𝑑 − 1 intentional context switches. These switch points
are sampled from all possible positions in the interleaving
with equal probability. For PCT to witness all possible re-
sults of 𝑥 in Figure 1, the depth parameter must be set so
that 𝑑 ≥ 10 (giving us PCT-10). PCT-10 is guaranteed to
witness any result with a probability of 2−1 · 10−9, which is
admittedly a poor bound for a program with only 252 pos-
sible interleavings. Indeed, we see that the distribution of
interleavings imposed by PCT-10 is highly skewed (see Fig-
ure 2 (right)). We observed that, even after more than 25000
repeated trials in our experiment, PCT-10 fails to generate
38 unique interleavings.
URW. Let us now discuss the Uniform Random Walk (URW),
the first algorithm we propose in this work. URW samples
from the interleaving space of the entire program in Figure 1
provably uniformly, and our evaluation confirms this (see
Figure 2 (left)). Crucially, we observe that sampling each
thread (Random Walk) or each context switch point (PCT)
uniformly does not yield uniformity in the interleaving space.
Instead, the key ingredient for uniformity is an accurate
estimate of the number of events in each thread that are
remaining to be scheduled. URW is then essentially a weighted
random walk that chooses each thread 𝑇𝑡 with probability
proportional to the number of remaining events in 𝑇𝑡 .

2.2 Selectivity
While interleaving uniformity is desirable for randomized
CCT algorithms, admittedly, it does not always translate to
behavioral uniformity. In Figure 1, program behaviors and in-
terleavings are synonymous; but in general, a single program
behavior may often result from multiple distinct interleav-
ings. Further, the number of interleavings that are behav-
iorally equivalent to each other could be highly variable
– some behaviors could correspond to disproportionately
more interleavings than others. An algorithm like URW that
focuses on interleaving uniformity is likely to over-sample
these behaviors. Our second key insight is to uniformly sam-
ple interleavings selectively, only for a subset of events whose
interleavings are more evenly distributed across behavioral
partitions. We call this subset of events as interesting events,
since distributions on interleavings of these events have a
closer correspondence with distribution on behaviors.
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1 void thread_A () {

2 x = x<<1;

3 x = x<<1;

4 x = x<<1;

5 x = x<<1;

6 x = x<<1;

7 y = y<<1;

8 // repeat 1000x

9 y = y<<1;

10 }

1 void thread_B () {

2 y = y<<1+1;

3 // repeat 1000x

4 y = y<<1+1;

5 x = x<<1+1;

6 x = x<<1+1;

7 x = x<<1+1;

8 x = x<<1+1;

9 x = x<<1+1+y%8;

10 }

Figure 3. Two threads performing atomic bit-shifts on de-
pendent shared variables 𝑥 and 𝑦. Behaviors 𝑥 = 31 + 𝑦%8
happen in dominantly many interleavings.

Consider the more involved illustrative program in Fig-
ure 3; here again we use the final value of the shared variable
𝑥 as proxy for the program behavior. Here, 𝑥 is dependent on
𝑦 (line 9 of thread_B, or B9 for short), and𝑦 is accessed 1000
times on each thread (in blue). The behavioral partitioning of
the interleaving space is thus highly skewed. Concretely, to
witness any result 𝑥 ≠ (31 + 𝑦%8), event A6 has to be sched-
uled after event B5. This happens with vanishingly small
probabilities even with interleaving uniformity, since A6 has
to be delayed after 1000 accesses of 𝑦 on thread B (B2-B4).
Readers may have observed that accesses to 𝑥 (in black)

are a candidate subset of interesting events. Indeed, their
interleavings are more evenly partitioned behaviorally and
heavily influence the program’s behavior. If we have this
information in advance, wemight try to explore interleavings
of only accesses to 𝑥 , rather than the entire program. This
allows us to sample 251 values of 𝑥 with probability 1

252 , and
8 other values with a combined probability of 1

252 .
2 Despite

a slight bias, the resulting distribution is much closer to
behavioral uniformity.
We remark that such selectivity must be exercised with

caution. Consider, for example, the natural (but naive) ex-
tension of URW that invokes the weighted random walk only
when enabled events are interesting, and otherwise contin-
ues executing the previously executed thread. This strategy
indeed recovers interleaving uniformity for 𝑥 , but it unfortu-
nately comes with considerable loss of exploratory power —
now only two of ≈ 21000 possible interleavings of 𝑦 (in blue)
can be witnessed, and thus 𝑦%8 only takes its value from
either 0 or 7. This makes the algorithm incomplete, because
some program behaviors could never be sampled. Moreover,
this precludes interactions between accesses on 𝑥 and 𝑦,
which could also be problematic for a general program.

Therefore, we aim to design a selectively uniform algorithm
featuring the following two key properties; here we use Γ to
denote the set of all events of the program, and Δ to be the
set of events chosen to be interesting (also note Δ ⊆ Γ):

2Here, the less likely behaviors are𝑥 = (31+𝑦%8) , from a single interleaving
of 𝑥 (A6 before B5) and different interleavings of 𝑦. All other interleavings
of 𝑥 give 𝑦%8 = 0 and thus corresponds to a single program behavior.

Γ-Completeness For any feasible interleaving of the
entire program (that include all events Γ), the algo-
rithm samples it with non-zero probability;

Δ-Uniformity For the chosen subset Δ ⊆ Γ of events,
the algorithm samples their interleavings uniformly.

In this paper, we devise a algorithm named Selectively
Uniform Random Walk (SURW) that satisfies the aforemen-
tioned properties. Given a pre-defined subset of interesting
events Δ, it prioritizes sampling of their interleavings uni-
formly (with URW), and schedules other events carefully to
respect the ordering constraints from interesting events. We
delegate detailed discussions on how to isolate the set of
interesting events Δ to Section 3.6. For Figure 3, if Δ contains
all accesses to 𝑥 , SURW can sample each interleaving of 𝑥 uni-
formly, without disabling any result of 𝑦 or any interaction
between 𝑥 and 𝑦. This achieves the desirable distribution
described earlier.

3 Approach
In this section, we present the design and analysis of URW and
SURW in detail, and discuss their guarantees for interleavings
(Section 3.3) and bug finding (Section 3.4) in simple settings,
and likely behaviors in more complex programs (Section 3.5).
We provide guidance on how to identify the set of interesting
events in Section 3.6.

3.1 URW

Randomized CCT algorithms typically sample interleavings
in a streaming fashion: at each step, the algorithm determines
an enabled thread to execute its next event. A thread is said to
be enabled if its next event is executable. We assume that the
next event of any enabled thread is visible to the algorithm
and is solely determined by the execution history.
We first present our basic algorithm URW (Algorithm 1).

URW takes, as input, integers 𝑛1, 𝑛2 . . . , 𝑛𝑘 , corresponding to
threads 𝑇1, . . . ,𝑇𝑘 of the program-under-test (line 1). URW is
guaranteed to uniformly sample those interleavings of the
program whose length is 𝑛 =

∑𝑘
𝑖=1 𝑛𝑖 and contain, for each

𝑖 , 𝑛𝑖 events from thread 𝑇𝑖 , when there is no blocking (e.g.,
wait-signal) synchronization, i.e., a thread is always enabled
until it exits. We postpone the discussion on programs with
synchronizations to Section 3.5.

At its core, URW is essentiallyweighted randomwalk, where
the weights are determined by the number of remaining
events in each thread. At each step, URW selects a thread
𝑇𝑡 until no more thread is enabled (line 2). Each enabled
thread𝑇𝑖 is selected with a weight that is proportional to the
number of events 𝑛𝑖 remaining on that thread (line 3). The
weight of thread 𝑇𝑡 is initialized using the input provided,
and decreased by one whenever an event of thread 𝑇𝑡 is
selected to be executed next (line 4).

URW’s uniformity is a consequence of the choice of the
weights. Intuitively, the weight of thread 𝑇𝑖 represents the
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Algorithm 1: URW
1 Input: 𝑛1, . . . , 𝑛𝑘 ; // event counts

2 while 𝐸 ← getEnabled() ≠ ∅ do
3 𝑇𝑡 ← random 𝑇𝑖 with Pr(𝑇𝑖 ) = 𝑛𝑖/

∑
𝑗∈𝐸 𝑛 𝑗 ;

4 𝑛𝑡 ← 𝑛𝑡 − 1;
5 execute(nextEvent(𝑇𝑡));

number of interleavings starting with NextEvent(𝑇𝑖 ). Sup-
pose that, at some point of the execution of the algorithm,
exactly 𝑘 ′ threads 𝑇𝑗1 ,𝑇𝑗2 , . . . ,𝑇𝑗𝑘′ are enabled. Let us use 𝑒 𝑗𝑖
and𝑛 𝑗𝑖 to denote the next event and the number of remaining
events in thread 𝑇𝑗𝑖 . In this case, the number 𝑠 𝑗𝑖 of possible
extensions of the execution generated thus far that also start
with 𝑒 𝑗𝑖 (for some 𝑖) can be calculated to be precisely3:

𝑠 𝑗𝑖 =

( ∑𝑘 ′
𝑖=1 𝑛 𝑗𝑖 − 1

𝑛 𝑗1 , . . . , 𝑛 𝑗𝑖 − 1, . . . , 𝑛 𝑗𝑘′

)
Now observe that for any 𝛼 ≠ 𝛽 , the fraction 𝑠 𝑗𝛼

𝑠 𝑗𝛽
is precisely

𝑛 𝑗𝛼

𝑛 𝑗𝛽

, as desired. Therefore, our choice of weights perfectly
sketches the count of feasible interleavings, and thus induc-
tively leads to uniformity.

3.2 SURW

In this section, we present SURW (Algorithm 2) which extends
URW. We denote the set of all events as Γ. SURW takes as input
a pre-defined subset of interesting events Δ ⊆ Γ (line 1), and
per-thread count 𝑛𝑖 ’s of interesting events (line 2).

As preluded in Section 2.2, selective uniformity is challeng-
ing in a streaming setup. In particular, the algorithm must
make scheduling decisions about a mix of interesting events
(in Δ) and other events (in Γ − Δ) that are simultaneously
enabled. Deterministic scheduling (e.g., always picking an
event in Δ first) could potentially disallow interleavings over
Γ that are otherwise feasible, violating the requirement Γ-
Completeness. On the other hand, naive randomized sched-
uling (e.g., choosing 𝑒1 first with some probability) could
deter uniformity over Δ, thus violating Δ-Uniformity. Our
algorithm circumvents this — it makes eager scheduling deci-
sions for events inΔ, potentially even before they are actually
enabled.
More specifically, SURW determines (in advance) a thread

𝑇𝑖𝑁𝑒𝑥𝑡 that is intended to execute the next interesting event
from Δ. Out of the many threads with non-zero (remain-
ing) interesting events, we select this intended thread via
weighted random walk as before (line 3). Our algorithm
then ensures that henceforth, the first interesting event to
be scheduled necessarily comes from thread 𝑇𝑖𝑁𝑒𝑥𝑡 . This is
achieved by actively blocking any other threadwhich is about
to execute an interesting event from Δ (line 12-13). On the
3Multi-choose function

( 𝑛
𝑛1,...,𝑛𝑘

)
= 𝑛!∏𝑘

𝑖=1 𝑛𝑖 !
(where𝑛 =

∑𝑘
𝑖=1 𝑛𝑖 ) represents

the number of ways to partition 𝑛 elements into 𝑘 sets with different sizes.

Algorithm 2: SURW
1 Input: Δ; // set of interesting events

2 Input: 𝑛1, . . . , 𝑛𝑘 ; // interesting event counts

3 𝑇𝑖𝑁𝑒𝑥𝑡 ← random 𝑇𝑖 weighted by 𝑛𝑖 ;
4 𝑏𝑙𝑜𝑐𝑘𝑒𝑑 ← ∅;
5 while 𝐸 ← getEnabled() ≠ ∅ do
6 𝑇𝑡 ← pickFrom(𝐸 - 𝑏𝑙𝑜𝑐𝑘𝑒𝑑);
7 if nextEvent(𝑇𝑡) ∈ Δ then
8 if 𝑇𝑖𝑁𝑒𝑥𝑡 == 𝑇𝑡 then
9 𝑛𝑡 ← 𝑛𝑡 − 1;

10 𝑇𝑖𝑁𝑒𝑥𝑡 ← random 𝑇𝑖 weighted by 𝑛𝑖 ;
11 𝑏𝑙𝑜𝑐𝑘𝑒𝑑 ← ∅;
12 else
13 𝑏𝑙𝑜𝑐𝑘𝑒𝑑 .add(𝑇𝑡 ); continue;
14 execute(nextEvent(𝑇𝑡));

other hand, threads with non-interesting events are allowed
to execute. This is enough to ensure that the resulting distri-
bution on the interleavings of the interesting events (from
Δ) is fully determined by URW, thus satisfying Δ-Uniformity.
In the meantime, the relative ordering among uninter-

esting events (from Γ − Δ), as well as their order relative
to the next interesting event, is determined by the func-
tion pickFrom() (line 6). The function pickFrom() yields a
thread from the provided set, and is parameterized by another
CCT algorithm. We note that the details of pickFrom() do
not affect the distribution over the interleavings over Δ. This
is because any unintended interesting events will always
be blocked. Further, when pickFrom() is selected so that it
samples each interleaving over Γ with non-zero probability
(when Δ = ∅), then SURW is guaranteed to be Γ-Complete. In
this work, we satisfy this requirement using a simple imple-
mentation of pickFrom() that assigns a random priority to
each event independently.

3.3 Comparison with Prior CCT Algorithms
In this section, we compare SURW’s guarantee with prior pop-
ular randomized CCT algorithms, and present a qualitative
comparison with them.
SURW v/s POS. POS [70] achieves its efficacy through on-the-
fly dynamic partial order reduction. If one marks conflicting
accesses as interesting (Δ), SURW could achieve a similar ef-
fect. Further, when the equivalence relation induced by the
underlying partial order is too fine-grained (as in, Figure 1),
then SURW is likely to outperform POS. This happens because,
in this case, the effect of the reduction is not prominent and
POS essentially degrades to its baseline, namely, Random
Walk, and, as discussed earlier, SURW improves over naive
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Random Walk by boosting the probability of sampling oth-
erwise infrequent interleavings.
SURW v/s PCT. PCT-𝑑 [6, 45], is intuitively catered to finding
bugs determined by ordered 𝑑-tuples of potentially buggy
events. This family of bugs admits efficient random testing
approaches [8, 34], and is pivotal to the effectiveness of PCT.
Indeed, when the depth 𝑑 is small and is known accurately a
priori, then PCT-𝑑 is likely to be more effective. On the other
hand, when the bug depth 𝑑 is known to be large, or is un-
known entirely, uniformity of behaviors or interleavings is a
good desirable property of the testing strategy, making SURW
a good choice, given that SURW is more versatile and requires
little knowledge about bug characteristics. In particular, we
observed that PCT is ineffective when ordering constraints,
a la PCT [8, 34], alone cannot characterize the class of buggy
interleavings (see Figure 4 and Section 4.2). Furthermore,
the effectiveness of PCT is poor when the bug in question
manifests only when multiple context switches happen in
close temporal proximity (see CVE-2016-1972 [13, 63]). SURW
naturally avoids these pitfalls by sampling uniformly from
the interleaving space and allowing for context switches at
each point during the execution.

3.4 Bug Finding Probability
We have presented the guarantee of SURW of hitting a partic-
ular interleaving. In practice, bugs often manifest in many
possible interleavings. Without prior knowledge of bug char-
acteristics, however, it is hard to extrapolate this guarantee to
bug finding. If the concurrent program follows certain thread-
ing configurations, as often adopted in real-world systems,
SURW is able to give strong probabilistic guarantees of hitting
a particular bug. In contrast, other algorithms such as PCT
could not take advantage of it as much. The strengthened
guarantees do not require additional knowledge about the
program under test, but instead rely on the following prop-
erty: Δ-Uniformity implies ΔT-Uniformity, where ΔT ⊆ Δ
denotes the set of interesting events that appear on a sub-
set of threads T ∈ P. Below we introduce three common
threading scenarios that admit strong guarantees.
Irrelevant threads. Consider a program where bug mani-
festation only depends on 𝑘0 < 𝑘 threads. For example, mon-
itoring or logging threads access shared resources frequently
but do not affect program behaviors. With Δ-Uniformity,
SURW also guarantees uniformity for the 𝑘0 relevant threads.
Clusters. Consider a program where threads are organized
into 𝑐 duplicated clusters, each containing𝑚 threads. Bug
exhibition depends on the interleavings of threads within
a single cluster. For example, a web server may spawn one
independent cluster of threads for each incoming client. To
witness the bug, it suffices to sample the intra-cluster sched-
ule for any cluster, which is sampled uniformly and indepen-
dently by SURW. Therefore, the success probability is

≥ 1 −
(
1 −

(
𝑛/𝑐

𝑛1, . . . , 𝑛𝑚

)−1)𝑐
where {𝑇1, . . . ,𝑇𝑚} forms a cluster.

Duplicates. Consider a program with 𝑘 threads but only
two distinct types, namely type A and B. Bug exhibition
depends on the interleaving of any pair of type-A and type-B
threads. This could resemble programs adopting a producer-
consumer or reader-writer model. Suppose there are 𝑘𝑎 type-
A threads and 𝑘𝑏 type-B threads, each consisting of 𝑛𝑎 and
𝑛𝑏 interesting events, respectively. With SURW, the schedule
of any such pair is sampled uniformly and independently.
Therefore, the bug is triggered with probability

≥ 1 −
(
1 −

(
𝑛𝑎 + 𝑛𝑏
𝑛𝑎, 𝑛𝑏

)−1)𝑘𝑎 ·𝑘𝑏
3.5 Blocking Synchronizations
In previous sections, we give probabilistic guarantees of SURW
in the absence of blocking synchronizations such as wait-
signal pairs. Each such pair imposes a partial order constraint
that signal happens before wait, and program interleav-
ings could be viewed as linearizations of the partial order
sets. Uniform sampling or exact counting of all linearizations
is known to be intractable [17, 64]. While polynomial-time
algorithms exist for special cases [15, 41] or approximations
[60, 64], they are not applicable in a lightweight streaming
algorithm. However, under common synchronization sce-
narios, such as those induced by thread creation or critical
sections, we could adopt simple strategies to achieve more
even exploration.
Thread creation. A child thread is not enabled until the
thread creation event on its parent thread is executed. How-
ever, the sampling weight of the parent thread does not take
this dependency into account, thus under-sampling inter-
leavings where the events on children threads are scheduled
early. To mitigate this effect, we schedule each parent thread
𝑇𝑝 with a combined weight 𝑛𝑝 +

∑
𝑖∈𝐶𝑝

𝑛𝑖 rather than 𝑛𝑝 ,
where𝐶𝑝 comprises of all unspawned descendant threads of
𝑇𝑝 . Moreover, we need to re-select the next intended thread
with updated weights after it creates a new thread. In effect,
this allows us to recover Δ-Uniformity.
Critical sections. Critical sections (CS) protect shared re-
sources by preventing conflicting accesses. Let us consider
when Δ is chosen such that all events are protected by CS
for mutual exclusion. In that case, SURW may schedule lock
acquisition from another thread before the interesting event
on 𝑇𝑖𝑁𝑒𝑥𝑡 , thus blocking the intended next thread as it waits
for a held lock. Moreover, if CS contains multiple events from
Δ, the event counts over-approximate the number of feasible
interleavings. A naive solution that treats each CS as an inter-
esting atomic block recovers uniformity on the interleavings
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of CS, but violates Γ-Completeness since events inside CS
and other code segments can no longer be interleaved. One
simple mitigation is to mark only the entrances (lock acqui-
sition) of CS as the interesting subset Δ. In this way, the
interleavings of CS could be uniformly sampled by SURW,
and events protected by the CS can still be interleaved with
other events, since they are all considered non-interesting.

3.6 Choosing the Set of Interesting Events
Our presentation of SURW, thus far, has intentionally treated
the set of interesting events Δ as a parameter, since a char-
acterization of an ideal choice of Δ is orthogonal to the core
working of SURW. Nevertheless, the quality of Δ is expected
to be crucial to the performance of SURW. In general, there
are multiple ways to identify Δ — one can perform simple,
yet automated coarse-grained program analyses, possibly to-
gether with some simple guidance, or alternatively a domain
expert can help manually supply this set. We next discuss
specific heuristics to determine the event set Δ in practice.
A precise characterization of the set Δ is challenging in

general, especially without working knowledge about the in-
ternals of the program under test. Nevertheless, we present
a simple but fully automated strategy and also employ it
to obtain a baseline instantiation of SURW (see Section 4).
Here, we first randomly select a small set of shared resources,
and then mark all events that access this set of resources
as interesting. This strategy is inspired by prior empirical
studies [33] that highlight that most real-world concurrency
issues can be attributed to only a few shared variables. Con-
cretely, for our baseline implementation of SURW in Section
4, we perform an initial profiling run, and randomly select
a few heap and global variables observed in this profiling
run, and pick Δ to be the set of all events that access these
variables. Despite this crude identification of Δ, SURW demon-
strates remarkable efficacy in our evaluation. We expect a
more sophisticated automated selection strategy to further
improve the performance of SURW.

Expert advice from humans (or even Large Language Mod-
els) can help identify a more precise and effective choice for
the set Δ. We put this hypothesis to test in our case study
of LightFTP (see Section 5). Here, we select the set of in-
teresting events to be those that correspond to all events
pertaining to file-system accesses. Our high-level intuition
behind this choice is rather straightforward — the key behav-
ior or a file-transfer protocol (FTP) server is to modify the
file system, and thus the space of behaviors of the FTP server
are likely going to be primarily determined by the state of
the file system, which can in turn be accurately captured by
accesses to it.
We remark that the of design SURW algorithm carefully

takes into consideration the imprecision due to a poor choice
of the setΔ. This is whywe emphasise SURW’s Γ-Completeness
property in Section 2.2: when the set Δ is imperfect, the be-
havioral distribution induced by SURW may be skewed, but

SURW is still guaranteed to sample each interleaving with non-
zero probability. In other words, the algorithm still functions
effectively, albeit not optimally.

4 Evaluation
In this section, we aim to understand the bug-finding ability
of SURW in practice on popular concurrency testing datasets [7,
30, 61]. Concretely, we answer the following:
RQ1 Is SURW better at exposing bugs compared to other

concurrency testing algorithms?
RQ2 How do the two key components of SURW, uniformity

and selectivity, contribute to its effectiveness?

4.1 Experiment Setup

Implementation.We implement SURW and all other base-
lines using a custom scheduler. This scheduler serializes a
program’s execution by overriding various functions in the
pthread library as in prior work [65]. The artifact and data
used in the paper is publicly accessible at:

https://doi.org/10.6084/m9.figshare.27627123

Interesting event subsets. Before running SURW, we con-
duct a single profiling run. For each execution of SURW, we
mark all accesses to randomly selected set of shared variables
as interesting events (see Section 3.6). Their counts are also
collected from the profiling run (see Section 7 for more dis-
cussions).
Instrumentation. We instrument all heap memory oper-
ations with a static binary rewriting tool E9Patch [16] to
invoke the scheduler before each memory operation. For
three target programs, we instrument only a subset of heap-
memory accesses to achieve higher execution speed by omit-
ting instructions that access read-only memory addresses
or are invoked excessively (>500 times) during execution.
These partially instrumented targets are denoted in Table 2.
Concurrency testing benchmarks. To measure the bug
finding ability of our approach, we adopt three benchmarks,
namely SCTBench [50, 61], ConVul [7, 10] and RaceBench-
Data [30, 48]. SCTBench andConVul have beenwidely adopted
in the concurrency testing literature [63, 65, 70]. SCTBench
comprises of 42 buggy concurrent programs from real-world
concurrency bugs, including command line tools [67, 68],
concurrent data structures [11, 43] and a JavaScript engine
for FireFox [24]. We omit two programs from SCTBench that
are reported by [65] as incompatible with the instrumenta-
tion tool E9Patch [16]. The ConVul benchmark consists of
10 bugs extracted from concurrency-related CVEs from 2009
to 2017 that cause memory corruption in FireFox and Linux
kernels. We use the version curated in [63]. RaceBenchData
comprises of 15 base programs collected from existing suites
[5, 66]. 5 of the base programs consist of more than 10k lines
of production-level code, including ray tracing libraries, vol-
ume rendering and video encoding tools. These programs
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Table 1. Result summary on SCTBench and ConVul: the
number of bugs found (max. 39) by different algorithms. All
other algorithms only find a subset of bugs exposed by SURW.
# of Bugs SURW PCT-3 PCT-10 POS RW N-U N-S

Total 35 33 33 30 21 32 34
Mean 34.90 30.70 30.65 29.05 20.85 29.75 31.75

have had synthetic concurrency bugs injected into them, in-
cluding deadlocks, atomicity violations and order violations.
The injected bugs introduce overheads of up to 400% into
the base programs. In all three benchmarks, bugs manifest
as assertion violations or crashes.
Baselines. We choose other well-known stateless, random-
ized CCT algorithms for direct comparison with SURW. These
algorithms include naive Random Walk (RW), Partial Order
Sampling (POS) [70] and Probabilistic Concurrency Testing
(PCT) [6]. Specifically, we choose PCT-3 and PCT-10. PCT-3
is reported to perform best on the SCTBench benchmark
by [61]. We also include PCT-10 as a representative case
for PCT with a large depth. Additionally, we conduct an ab-
lation study for each of the two key components of SURW:
uniformity and selectivity. We implement two ablative vari-
ants, namely Non-Uniform (N-U) and Non-Selective (N-S),
to investigate the impact of each component in isolation.

4.2 RQ1: Discovery of Bugs
To determine if our approach leads to better bug discovery,
we evaluate SURW and other algorithms on SCTBench [50],
ConVul [10] and RaceBenchData [48] Benchmarks.
SCTBench and ConVul. On SCTBench and ConVul, we
measure the number of schedules to the first exposure of a
bug, following prior work [65]. For a single session, we sam-
ple up to 104 schedules for each scheduling algorithm. We
conduct 20 such sessions for each program in these bench-
marks. In the case of one particular program, SafeStack, we
instead sample 106 schedules per trial, as it has been proven
elusive in previous works [65, 70]. For concision, we omit
11 trivial programs from our results where all algorithms
sample the buggy schedule within 10 executions on average.
We greatly disadvantage SURW by choosing the interest-

ing events Δ to be all accesses to a single randomly selected
shared variable. The variable we selectively explore with
SURW is picked with probability proportional to its total ac-
cess count. Still, we find that even with no additional infor-
mation about which events are interesting, SURW is extremely
successful in finding bugs.
We present the detailed breakdown for the number of

schedules required to expose each bug in Appendix A. Table
1 summarises the number of bugs found for each algorithm,
where “Total” refers to the the cumulative number of dis-
tinct bugs found across 20 sessions, and “Mean” refers to the
average number of bugs found in each session. SURW exposes
more bugs (34.90 on average) than other algorithms with

Table 2. The # of unique bugs exposed in RaceBenchData.
Each row is a base program that contains 100 bugs in total.
Targets with ∗ are selectively instrumented.

Target SURW PCT-3 PCT-10 POS RW

blackscholes 36 15 17 26 20
bodytrack 75 34 35 58 29
canneal 62 13 20 56 34
cholesky∗ 77 36 46 77 49
dedup 79 22 22 80 45
ferret 80 41 54 84 46
fluidanimate∗ 70 46 53 68 28
pigz 40 28 36 40 16
raytrace 64 24 24 58 42
raytrace2∗ 73 18 24 74 50
streamcluster 78 31 43 77 31
volrend 32 17 19 29 12
water_nsquared 28 13 15 27 26
water_spatial 86 29 38 90 50
x264 64 12 15 41 11
Total (max. 1500) 944 379 461 885 489

statistical significance (𝑝 < 10−4 by Mann-Whitney U Test
[35]). More importantly, no other algorithm triggers bugs
that SURW fails to expose. We perform log-rank test [36] to
determine the algorithm that requires the least number of
schedules for bug discovery. With significance level 𝑝 < 0.05,
SURW claims the best performance on 26/35 targets. On 6 of
the other 9 targets, SURW requires only ≤ 10 schedules on
average to trigger the bug.
RaceBenchData. In addition to the SCTBench and Convul
benchmarks, we evaluate the algorithms on the RaceBench-
Data benchmark [48]. For this dataset, we follow the RaceBench
[30] authors in using the total number of distinct bugs ex-
posed as our metric for effectiveness. Each base program is
embedded with 100 bugs, which we execute for 5× 104 itera-
tions with each algorithm. For these benchmark programs,
we instantiate SURW’s interesting event set to be all accesses
to a random memory region that contains multiple shared
variables, whose combined counts are above a threshold.

We present our results in Table 2. Here we see that SURW
is able to expose 944 distinct bugs, followed closely by POS
at 885 bugs. Of the 15 programs, SURW finds the most unique
bugs in 11 of them, followed by POS which finds the most
bugs in 6 programs. PCT-3, PCT-10 and Random Walk don’t
find the most bugs for any of the evaluated programs.
We note that each program instance in this benchmark

contains multiple bugs, and that this can cause issues for
approaches that maintain an event count, such as SURW or
PCT. If a shallow bug causes the program execution to ter-
minate early, the observed event counts may no longer be
representative for a non-crashing execution. These prema-
ture crashes may explain the relatively smaller difference
between SURW and POS as compared to the results from our
other two benchmarks.
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Surprisingly, both variants of PCT perform worse than
naive Random Walk on this benchmark. While inaccurate
count estimates also affect PCT, we attribute its poor perfor-
mance predominantly to the characteristics of the injected
bugs. Specifically, many of these bugs are of high depth (up
to 12) and the execution traces are extremely long (up to
millions of events). The bound of PCT is proportional to 1

𝑛𝑑

where 𝑛 is the trace length and 𝑑 is the depth.

SURW outperforms comparable randomized CCT algorithms
by a large margin on three leading benchmarks, even with
only randomly selected interesting event sets.

To further understand the performance of different algo-
rithms, we delve into the series of reorder examples from
SCTBench [50], where the number in the target name pa-
rameterizes the number of threads involved. A simplified
version of reorder_100 is shown in Figure 4. As few as one
context switch is sufficient to trigger the bug on line 8, by
switching to the checker thread immediately after any set-
ter thread executes line 3. That does not imply the bug is
straightforward to trigger – the scheduler has to enforce that
no setter thread executes line 4 before the check on line 7.
Indeed, no other algorithm is able to find this bug even once
in any of the 20 × 104 runs we conducted.

As highlighted in Section 3.3, ordered tuples can be insuf-
ficient for bug manifestation, as other events (here, line 4
from another setter thread) could disable buggy behaviors
for correctly ordered tuples. On the other hand, POS exploits
partial order for concurrent reads and writes. However, as
setter threads are created first, they tend to execute first as
well. It is thus exponentially unlikely for the checker’s access
on 𝑏 enabled simultaneously with others’.

In contrast, SURW exposes the bug within 200 schedules on
average (see Appendix A). The probability to trigger this bug
is indeed ≈ 1

200 : after all accesses to variable 𝑏 are chosen as
interesting events Δ (with probability 1

2 ), it suffices for SURW
to schedule the checker thread first (with probability 1

100 ).
With thread counts as future information, SURW is able to
dictate the first access to variable 𝑏 even before it is enabled.

4.3 RQ2: Ablation Study
To assess how each component of SURW, namely uniformity
and selectivity, contributes to its performance, we conduct
an ablation study. We implement two ablative baselines to
compare with SURW. The first, Non-Uniform (N-U), uses the
same selectivity strategy and algorithm as SURW, but applies a
naive random walk to the interesting subset rather than URW
(line 9 of Algorithm 2). This setup demonstrates the impact
of our uniform sampling algorithm for the interesting subset.
The second, Non-Selective (N-S), applies URW to the entire
program; i.e. all events are considered interesting. This setup
shows the impact of selectivity for SURW.

1 static int a = 0, b = 0;

2 void setter_thread () {

3 a = 1;

4 b = -1;

5 }

6 void checker_thread () {

7 if (!(a == 0 && b == 0) && !(a == 1 && b == -1)) {

8 assert (0); // Bug triggered

9 }

10 }

11 int main() {

12 int n_set = 99;

13 int n_check = 1;

14 for (int i = 0; i < n_set; i++) {

15 std:: thread(setter_thread );
16 }

17 for (int i = 0; i < n_check; i++) {

18 std:: thread(checker_thread );
19 }

20 return 0;

21 }

Figure 4. Simplified example of reorder_100 in SCTBench.

We conduct our ablation study on the SCTBench and Con-
vul Benchmarks [10, 50]. A summary is presented in the
last two columns of Table 1, with full results shown in the
Appendix A. Both ablative versions fail to locate all bugs
found by full-fledged SURW.
Effect of uniformity. SURW shows nearly a strict improve-
ment over N-U on the benchmark targets. On the series
of reorder programs (e.g. Figure 4), N-U performs notably
worse than SURW. This is because it suffers from a similar
pitfall as POS. More tellingly, uniformity exploits the dupli-
cate and irrelevant threading pattern as discussed in Sec-
tion 3.4. Consider reorder_20, which is a variant of Fig-
ure 4 that spawns 10 setter threads and 10 checker threads.
SURW samples the interleaving of each checker independently
with respect to all the setters, allowing it to consistently
crash reorder_20 in just 10 schedules, despite this example
having substantially more possible interleavings than other
threading configurations with comparable results, such as
reorder_3. In contrast, N-U requires > 500× as many sched-
ules to find the bug on average.
Effect of selectivity. Selectivity allows SURW to focus on a
smaller subset of interesting events, and here we see it also
outperforms our ablative N-S algorithm by a wide margin. In
particular, SURW scales much better as the number of events
in the program execution increases. Most visibly, SURW could
crash programs with large numbers of threads (and thus
events) such as reorder_100 and twostage_100 within a
few hundred schedules on average, improving the perfor-
mance of N-S by 5-10×. Moreover, N-S also lacks SURW’s
robustness when facing irrelevant events and locks. For ex-
ample, SURW successfully triggers the bug in IWSQ by focusing
on a single variable with less than 30 accesses. N-S, however,
has to navigate through more than 3000 total events, many
of which are protected by locks. These locks can greatly
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reduce the number of possible interleavings, causing N-S’s
sampling weights to be misleading. To make matters worse,
the number of events unrelated to the bug fluctuates dras-
tically as the control flow of the program changes, further
distorting the weights for N-S. SURW, on the other hand, is
largely unaffected when the correct variable is selected.

Both uniformity and selectivity significantly contribute to
SURW’s success; on the SCTBench and ConVul benchmarks
uniformity appears to have a slightly larger effect.

5 Case Study: LightFTP
In the case study, we investigate how SURW explores inter-
leavings and behaviors of real-world software. We conduct
an in-depth case study with a production-ready web server,
LightFTP [31]. LightFTP is a popular implementation of a
File Transfer Protocol (FTP) server, that has been widely
deployed for software distribution and data exchanges in
enterprise settings. Its integrity and reliability is extremely
crucial, as it facilitates direct file system operations for clients.
The server is multi-threaded in nature to accommodate con-
current client accesses. By design, it spawns a thread (and
possibly more worker threads) for each incoming connec-
tion. However, it has no built-in scheduler and the order of
request processing purely depends on the OS, making it a
perfect target for CCT tools.
To expose the multi-threaded behavior of the server, we

created 4 concurrent clients which all operate on a single
shared directory, each sending a randomly shuffled command
sequence.4 After authenticating itself, each client issues 3
utility commands, 3 MKD to create its own directories and 3
RMD to remove others’ directories – all in a random order.
Each client then sends one PASV-LIST request to fetch the
folder structure before disconnecting.

Here we are interested in both interleavings and behaviors
of the target: the interleavings are the temporal ordering of
file system accesses; and program behaviors are represented
by the final file structure returned by the last LIST command.
We investigate how well SURW explores the search space
on real-world programs, with the following two primary
metrics: (1) [coverage] the number of distinct interleavings
and behaviors witnessed; and (2) [uniformity] how evenly
are these interleavings and behaviors sampled.
We include PCT-3, PCT-10 and Random Walk for com-

parison. POS is excluded since the events do not involve
memory accesses. We also disadvantage SURW relative to oth-
ers by granting naive selectivity for all algorithms, i.e., all
algorithms only need to schedule events relevant to the in-
terleavings and the behaviors. Unlike the benchmarks used
in Section 4, program behaviors are fully determined by the

4To facilitate automated testing, we modify the server to shut down after all
clients disconnect, instead of waiting for termination on keyboard inputs.

(a) Interleaving coverage

(b) Behavioral coverage
Figure 5. Interleaving (a) and behavioral (b) coverage for
LightFTP: # of distinct interleavings/behaviors vs # of sched-
ules sampled. SURW achieves the highest coverage in both.

relative ordering of MKD and RMD pairs. This setup further fa-
vors PCT since it specializes in ordering patterns. We record
the results for 10k iterations in each trial, and repeat for 20
trials. The main results are shown in Figure 5 and Table 3.
Figure 5a and 5b shows the number of distinct interleav-

ings5 and behaviors witnessed as the sample size increases,
respectively. The solid line depicts the mean and the shaded
region represents the standard deviation.

SURW consistently covers around 50% more interleavings
than Random Walk and 6× more than PCT-10 on average,
with a negligible variance. For program behaviors, SURW wit-
nesses the most unique states of around 1000 in expectation.
However, it inflicts a high variance due to randomly shuffled
client commands. This suggests an unfortunate sensitivity of
interleaving sampling when exploring ordering patterns. No-
tably, despite exploring far fewer interleavings than Random
Walk, PCT-10 manages to explore more distinct behaviors
on average (though still fewer than SURW). This indicates
its efficacy in discovering different ordering patterns, but
also underscores why it suffers when the bug manifestation
requires more fine-grained dependencies between events.

Table 3 reports the Shannon Entropy of both the interleav-
ings and behaviors observed. A larger entropy implies to a
5We only record the interleaving for two randomly selected clients, since
the full interleaving space is so large (> 1014) that no algorithm is likely to
sample the same interleaving more than once within our testing budget.
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Table 3. Shannon Entropy of the distribution of interleavings
(top) and program behaviors (bottom) on LightFTP. A larger
entropy indicates a more even distribution.
Entropy SURW PCT-3 PCT-10 RW

Interleavings 8.57 ± 0.01 3.81 ± 0.05 4.80 ± 0.10 7.17 ± 0.34
Behaviors 5.69 ± 0.64 3.76 ± 0.06 4.84 ± 0.10 4.66 ± 0.17

more even distribution. SURW displays the highest entropy in
both categories. This suggests that (1) SURW’s guarantee of in-
terleaving uniformity translates well to real-world programs,
achieving a higher coverage and evenness; and (2) in practice,
this increased uniformity in the interleaving space leads to
increased uniformity in program behaviors observed.

6 Related Work
Randomized concurrency testing. Randomized concur-
rency testing algorithms opportunistically generate feasible
interleavings, often in a streaming fashion. SURW belongs
to the class of stateless algorithms, where each schedule is
independently sampled. These algorithms are lightweight,
portable, and often provide a probabilitic guarantee of hit-
ting certain classes of bugs under some assumptions. Their
design and implementation typically imposes minimal over-
head to the program execution. Notably, PCT [6] samples
from preemption-bounded interleavings to boost its success
probability [8, 34], and has been extended to a multi-core
[44] or message-passing [45] setup. RAPOS [51], POS [70]
and taPCT [46] incorporates partial order information when
making online decisions. We compare with the two most
prominent stateless CCT algorithms, namely PCT and POS,
in Section 4 and 5.

In contrast to stateless randomized CCT algorithms, state-
ful algorithmic frameworks, such as greybox-fuzzing [65] or
reinforcement learning [42], conduct an adaptive, biased ran-
dom search. For example, RFF [65] enforces partial ordering
constraints guided by past executions (i.e. adaptive bias), and
instantiates the constraints with a stateless algorithm (i.e.
random). While these approaches can be extremely efficient
per schedule executed, they tend to be more heavyweight
due to the burden of additional information tracking during
and between executions. RFF maintains in-memory state
machines for each constraint at runtime and QL [42] must
maintain a set of all visited states in all previous executions.
In contrast, stateless algorithms only track a few integers of
per-thread event counts or priorities. Concretely, we bench-
marked both RFF and our implementation of SURW on the
program in Figure 1, and each scheduling decision of RFF is
15× slower than that of SURW on average (305 ns versus 20
ns). We also remark that these approaches are orthogonal
to their stateless counterparts, as stateless algorithms can
be incorporated into adaptive search frameworks. RFF, for

example, explicitly incorporates the stateless POS algorithm
as a subroutine.
Systematic concurrency testing & model checking. To
explore the intractably large search space, systematic ap-
proaches often focus exclusively on a subspace, prioritize
certain execution patterns or employ reduction techniques.
CHESS [18, 43] focus on the preemption- or delay-bounded
space. Maple [69] employs shared memory access patterns
whereas Period [63] adopts thread switching patterns to par-
tition the interleaving space. Model checking tools [9, 27]
assume a similar enumerative stance and often involve re-
duction techniques [1, 2, 4, 20]. Given sufficiently long time,
these techniques may formally prove the absence of bugs.
In contrast, SURW is highly lightweight and instead provides
probabilistic guarantees of hitting any buggy interleaving.
Therefore it is more scalable on large programs, and gives
incrementally stronger confidence to the system under test
as the sample size / time budget increases.
Dynamic analyses. Dynamic concurrency bug detectors in-
cluding sanitizers like TSan [54], aim to detect concurrency
issues from execution traces. Predictive analyses [25, 28, 37–
39, 53, 55, 58] enhance their bug finding capability by ex-
ploring reorderings of the observed interleaving under a
predefined notion of equivalence [19], without rerunning
the program. This allows effective detection of potential
data races [23, 25, 37, 47, 49], deadlocks [62], atomicity vio-
lations [40] and other properties [3, 21]. We note that these
techniques are intrinsically incomplete, as traces out of the
observed equivalence class are never accounted for. More-
over, traditional concurrency bugs such as data races are
often insufficient for bug manifestation [7, 32]. We believe
dynamic analyses and SURW are complementary to each other,
as they crave for a diverse and representative sample of in-
terleavings and in return identify interesting events for SURW
to target.

7 Limitations
Accurate estimation of event counts. SURW leverages per-
thread event counts to achieve selective uniformity in the
interleaving space. However, we acknowledge that the prob-
lem of determining event counts is undecidable in general.

We note that the accuracy of the estimated counts can af-
fect the effectiveness of our approach. Concretely, if a thread
𝑇𝑡 executes more events than its count estimate, the interleav-
ings where events on 𝑇𝑡 happen early in the execution tend
to be under-sampled by SURW. We expect the algorithm to
function reasonably well only when the error in estimation
is not systematically biased towards certain threads, that is,
the relative ratio of the estimated counts of different threads
is not too far from the actual ratios.

In our evaluation (Section 4), we obtain these counts using
a single profiling run. Such an estimation can be inaccurate
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when there is a large variance across the set of all runs, and
more exhaustive but heavyweight methods, such as Knuth’s
monte carlo estimation [26], can instead be employed to fur-
ther improve the accuracy. For programs whose control flow
depends on the schedule, such as those involving spin locks,
the number of events may vary drastically. If these events
are of interest, their counts could be arbitrarily far-off from
the estimate, and as a result, scheduling decisions can be mis-
led by distorted weights, leading to degraded performance
of SURW (see Non-Selective in Section 4.3). In practice, SURW
appears to be effective even with our simple event count
estimation, thanks to its selectivity. In particular, we note
that event counts are highly variable in the RaceBenchData
[30, 48] suite, where many variables are accessed only if
specific program paths are exercised. Nevertheless, in our
empirical evaluation, we observe that the core advantages of
SURW ensure that it outperforms other stateless algorithms.
Varied inputs, threads and other non-determinism.Our
experiments and case study are conducted on deterministic
programs with a fixed input, following prior works on con-
currency testing [6, 63, 65]. The setup mimics a typical use
case of CCT techniques, where a given test case is executed
repeatedly to uncover bugs under different interleavings.
Consequently, the reported results may not extrapolate be-
yond this class of programs. For example, SURW is not directly
applicable if the number of threads varies, or if the execu-
tion depends on other source of non-determinism such as
environmental interactions.

8 Discussion
In this work, we construct a concurrency testing algorithm
from first principles. We endorse interleaving-uniformity
on appropriately selected events as a principled means to
achieve effective behavioral exploration. With this insight,
we develop a lightweight, yet highly effective algorithm,
which we demonstrate on a broad suite of concurrency
benchmarks. Looking forwards, we believe this approach
can be the basis for future CCT algorithms. We see great po-
tential in combining stateless algorithms such as SURW with
their stateful counterparts or dynamic analysis techniques,
leading to further innovation in the research area.
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A Mean Number of Schedules to 1st Bug

Table 4. Full results on SCTBench and ConVul: the number of schedules to 1st bug exposure (mean ± standard deviation).
Results are indicative of the time to exposure (TTE). A smaller number indicates the algorithm is able to expose bugs faster.

Target SURW PCT-3 PCT-10 POS Random Non Non
Walk Uniform Selective

CS/twostage 8 ± 4 13 ± 14 9 ± 10 15 ± 12 464 ± 581 8 ± 5 9 ± 8
CS/twostage_20 6 ± 3 159 ± 151 101 ± 92 156 ± 137 − 172 ± 164 24 ± 28
CS/twostage_50 20 ± 17 1676 ± 1715 692 ± 392 1637 ± 1385 − 1834 ± 1894 93 ± 58
CS/twostage_100 454 ± 444 7466 ± 831∗ 5726 ± 2591∗ 6674 ± 2877∗ − − 2992 ± 2589∗
CS/reorder_3 7 ± 7 185 ± 199 148 ± 191 86 ± 70 − 26 ± 20 24 ± 23
CS/reorder_4 7 ± 6 554 ± 643 362 ± 213 533 ± 651 − 53 ± 45 22 ± 27
CS/reorder_5 10 ± 9 647 ± 517 1094 ± 1216 2169 ± 2182 − 152 ± 118 27 ± 28
CS/reorder_10 17 ± 11 3225 ± 2426∗ 4462 ± 3266∗ − − 4358 ± 3358∗ 74 ± 65
CS/reorder_20 6 ± 4 3005 ± 2680 3297 ± 2877∗ − − 3783 ± 3345∗ 10 ± 9
CS/reorder_50 13 ± 12 3304 ± 1721∗ − − − − 75 ± 62
CS/reorder_100 194 ± 214 − − − − − 3785 ± 3062∗
CS/stack 5 ± 3 3 ± 2 3 ± 1 2 ± 1 176 ± 136 5 ± 4 986 ± 1163∗
CS/deadlock01 2 ± 0 13 ± 12 7 ± 6 4 ± 3 3 ± 3 4 ± 3 3 ± 1
CS/token_ring 8 ± 6 8 ± 6 8 ± 8 9 ± 11 13 ± 13 10 ± 7 9 ± 6
CS/lazy01 2 ± 0 5 ± 3 5 ± 3 5 ± 3 21 ± 21 6 ± 3 4 ± 2
CS/bluetooth_driver 70 ± 55 112 ± 73 83 ± 86 36 ± 29 215 ± 225 70 ± 55 1494 ± 1474∗
CS/account 6 ± 5 4 ± 2 4 ± 3 4 ± 3 18 ± 24 7 ± 4 3 ± 1
CS/wronglock 7 ± 7 51 ± 50 20 ± 20 10 ± 14 36 ± 42 4 ± 3 4 ± 1
CS/wronglock_3 9 ± 9 58 ± 46 14 ± 10 11 ± 14 36 ± 42 5 ± 4 5 ± 2
CB/stringbuffer-jdk1.4 8 ± 7 281 ± 261 26 ± 24 23 ± 19 2243 ± 2324∗ 8 ± 6 834 ± 608
Chess/IWSQ 6 ± 5 48 ± 36 13 ± 14 14 ± 11 − 40 ± 42 428 ± 742
Chess/IWSQWithState 6 ± 5 907 ± 740 204 ± 220 5 ± 4 26 ± 28 7 ± 5 1367 ± 1581∗
Chess/SWSQ 7 ± 6 842 ± 679 199 ± 216 6 ± 5 − 15 ± 11 5 ± 3∗
Chess/WSQ 6 ± 4 48 ± 49 16 ± 14 12 ± 7 − 33 ± 33 13 ± 10
Inspect/bbuf − − − − − − −
Inspect/boundedBuffer 9 ± 7 20 ± 18 6 ± 4 5 ± 4 7 ± 7 8 ± 6 7 ± 5
Inspect/qsort_mt 3048 ± 2669∗ 3004 ± 2787∗ 4714 ± 2931∗ 3689 ± 2997∗ 3442 ± 2806∗ 2392 ± 1718 297 ± 209
RADBench/bug4 23 ± 24 1973 ± 2668∗ 1044 ± 1440 240 ± 185 1688 ± 1590∗ 48 ± 51 438 ± 609
RADBench/bug5 − − − − − − −
RADBench/bug6 4 ± 3 42 ± 39 21 ± 21 18 ± 10 48 ± 46 6 ± 4 5 ± 4
SafeStack† 368921 ± 329371∗ − − − − − −
ConVul/CVE-2013-1792 15 ± 13 95 ± 83 50 ± 61 39 ± 33 364 ± 289 24 ± 25 141 ± 228
ConVul/CVE-2016-1972 11 ± 8 4902 ± 2391∗ 2712 ± 2704∗ 34 ± 34 299 ± 256 12 ± 9 34 ± 28
ConVul/CVE-2016-1973 5 ± 3 10 ± 8 6 ± 3 5 ± 4 308 ± 333 5 ± 4 17 ± 23
ConVul/CVE-2016-7911 8 ± 9 20 ± 18 15 ± 15 11 ± 9 3 ± 2 16 ± 12 6 ± 8
ConVul/CVE-2016-9806 3 ± 2 7 ± 6 4 ± 3 7 ± 5 2209 ± 2065 6 ± 5 4 ± 2
ConVul/CVE-2017-15265 − − − − − − −
ConVul/CVE-2017-6346 15 ± 10 24 ± 18 20 ± 19 10 ± 9 3 ± 4 9 ± 7 2 ± 0

Each cell shows the # of schedules (mean ± standard deviation) to the 1st bug across 20 sessions
Results include 1 trial run schedule required for SURW, PCT-3, PCT-10, Non-Uniform and Non-Selective
† SafeStack is run for 106 iterations for each algorithm (up from 104)
− indicates the bug is not triggered across all sessions
∗ indicates the bug is not triggered in at least 1 session
bold indicates the best result on the target with statistic significance (by log-rank test [36], 𝑝 < 0.05)
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B Artifact Appendix
B.1 Abstract
The SURW artifact mainly includes a dynamic library that (1)
wraps pthread functions to serialize the execution of concur-
rent programs, and (2) controls thread scheduling with SURW
as well as other stateless scheduling algorithms evaluated
in the paper. In addition, there is a binary instrumentation
tool that invokes the dynamic library at every instruction
involving memory operations. These functionalities are im-
plemented using Zig, C/C++ and Python.

This artifact also contains the containerized setup for tar-
gets used in the evaluation and case study section, and all
raw data and scripts generate all figures and tables presented
in the paper. Convenience scripts are provided for reproduc-
ing the results for the following subject: (1) An experiment
comparing SURW to other algorithms and ablative versions
on two widely used benchmark suites in terms of schedules-
to-first-bug; (2) An experiment comparing SURW to other
algorithms on another benchmark in terms of the total num-
ber of bugs found; and (3) A case study comparing SURW to
other algorithms on a real-world protocol server in terms of
coverage and uniformity.

The recommended software dependencies are recent ver-
sion of Ubuntu with Docker, Python3 and bash. The experi-
ment requires disabled address space layout randomization
(ASLR). A modern 8 core machine should be able to finish
the experiments within 3 days.

B.2 Artifact check-list (meta-information)
• Algorithm: Algorithm 2
• Program: SCTBench [50] and ConVul [10] curated by [63],
RaceBenchData [48], LightFTP [31]
• Transformations: binary rewriting tool E9Patch [16]
• Run-time environment: Linux (Docker)
• Metrics: Schedules to 1st bug, interleaving and behavioral
coverage, Shannon entropy
• Output: Json files, LATEX files, graphs
• Experiments: Bash and Python scripts
• How much disk space required (approximately)?: <30
GB for all Docker images combined; <8 GB for the largest
image alone if the each image is built separately.
• How much time is needed to prepare workflow (ap-
proximately)?: 1-3 hours to build Docker images
• How much time is needed to complete experiments
(approximately)?: Around 3 days on a typical 8 core CPU
• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT
• Archived (provide DOI)?: Yes, via
https://doi.org/10.6084/m9.figshare.27627123

B.3 Description
B.3.1 How to access. Via the DOI link above.

B.3.2 Hardware dependencies. An x86 CPU and at least
8 GB of RAM. More cores will make the experiments faster
with parallelism, but are not necessary.

B.3.3 Software dependencies. A recent version of Ubuntu
with admin privileges. Bash, Docker, plus Python3 and a few
package dependencies.

B.3.4 Data sets. All raw data used in the paper is included
in the artifact under the stats directory.

B.4 Installation
Note that installation steps and scripts assume a recent ver-
sion of Ubuntu (e.g., 20.04). These steps can be adapted to
other Linux distros with some modifications of the bash
scripts and commands below.

1. Install Docker and Python3:
sudo snap install docker
sudo groupadd docker
sudo usermod -aG docker $USER
sudo apt install -y python3

2. Clone E9Patch [16]:
git clone git@github.com:GJDuck/e9patch.git
cd e9patch; git checkout b4e7175; cd ..

3. Install Python dependencies:
python3 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt

4. Run ./build_all.sh to build all Docker containers.
5. Run the following command to disable address space

layout randomization (ASLR):
echo 0 | \
sudo tee /proc/sys/kernel/randomize_va_space

Note: your system will be more vulnerable to exploits while
ASLR is disabled. ASLR will be reinstated on reboot.

B.5 Experiment workflow
The experiments can be run with convenience scripts on
the host OS, which invoke multiple Docker containers in
isolation and save the collected results to the stats directory.
When started, each Docker container runs the target up to
a fixed number of iterations. The compiled version of the
dynamic library and target programs are constructed when
building the Docker images.

B.6 Evaluation and expected results
All experiments should produce comparable, if not identical,
results as reported in the paper.
SCTBench and ConVul. The experiment can be rerun with

python3 scripts/eval/run_period.py

Table 1 and Table 4 (in Appendix A) can be generated from
saved (or new) results using

python3 scripts/analyze/eval_period.py

RaceBenchData. The experiment can be rerun with
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python3 scripts/eval/run_racebench.py

Table 2 can be generated from saved (or new) results using
python3 scripts/analyze/eval_racebench.py

LightFTP. The case study can be rerun with
python3 scripts/eval/run_lftp.py

Table 3 and two sub-figures of Figure 5 can be generated
from saved (or new) results using

python3 scripts/analyze/plot_lftp_a.py
python3 scripts/analyze/plot_lftp_b.py

B.7 Experiment customization
The dynamic library supports a wide range of customiza-
tion options. The artifact contains configuration files for
many stateless CCT algorithms, some of which are not dis-
cussed in the paper. For example, it supports different imple-
mentations of pickFrom() in Algorithm 2. Additionally, it
supports selecting different events as interesting for SURW,
such as accesses to specified memory addresses, locks or
sched_yield() calls. Interested readers may refer to the

README.md file in the artifact for more detailed explanations.
However, we note that the artifact is a research prototype
that is still under development, and that some customization
options may not be stable.

B.8 Notes
Please run all convenience scripts and commands from the
documentation at the base directory of the artifact. The exper-
iments are run with fixed random seeds, which in principle
should produce consistent results. However, it is possible to
have slight variations in the results due to different system
environments or workloads.

B.9 Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-
badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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