
Selectively Uniform
Concurrency Testing

Huan Zhao

Co-Authors: Dylan J. Wolff Umang Mathur Abhik Roychoudhury

{ zhaohuan, wolffd, umathur, abhik } @comp.nus.edu.sg

1

2

Model Controlled Concurrency Testing (CCT)
as a sampling process

What makes a sampling process ideal?

Background

Our Work

Overview

Concurrent Programs (1)

3

Critical digital infrastructure Disastrous concurrency bugs

Concurrent Programs (2)

• Non-deterministic behaviors depending on
interleavings, i.e., ordering of thread executions

• With 2 threads each with 5 atomic events,
there are 252 possible observable behaviors (value of x)

→Concurrency bugs may only manifest in few interleavings
→Difficult to expose and reproduce concurrency bugs!

4

the space of
all interleavings

Interleavings with
buggy behaviors

Stress Testing
• Repeated and uncontrolled executions with the default OS scheduler

• However, wildly different interleavings are possible when deployed,

due to unpredictable changes to the system workload!

5

Executed interleavings

Controlled Concurrency Testing (CCT)

1. Serialized program execution

2. Online decision of which event to run next

6

1. Serialized program execution

2. Choose each thread to run with equal prob.

7

Serialized execution

A1 A2 B1
B2

thread_A

thread_B

A3

A4

B3 B4
?

Randomized CCT: Random Walk

Probability
1

2

1

2

CCT as a Sampling Process

8

the space of
all interleavings

Interleavings with
buggy behaviors

Executed interleavings

• Sampling of interleavings according to a prob. distribution

• Lightweight yet effective schedule generation, often with prob. guarantees

• Reproduces exposed bugs deterministically

What makes

a sampling process ideal?

9

Uniformity

The optimal sampling strategy:
Sample each program behavior with equal probability (i.e., uniformly)
→ maximize the minimum probability of any behavior being sampled

However, behaviors are program dependent and unknown a priori!

The most fine-grained notion of behaviors: interleavings!

10

Motivating Example (1)

• Interleavings ➔ (observable) program behaviors, i.e., value of x

• Total number of interleavings / behaviors: (10 choose 5) = 252

• An ideal algorithm samples each value of x w.p. 1/252

11

Motivating Example (2)

Ideal Random Walk
Partial Order Sampling [1]

PCT-10 [2]

Existing strategies are highly biased!

For RW / POS: 2 events are sampled w.p. 1/32; but 140 events are sampled w.p. 1/512
For PCT-10: 38 interleavings are not witnessed once in >25,000 executions in our experiment!

Total # of int. / behaviors = 252

12
[1] Yuan, Xinhao, et al., 2018. "Partial order aware concurrency sampling." CAV 2018.

[2] Burckhardt, Sebastian, et al., 2010. "A randomized scheduler with probabilistic guarantees of finding bugs." ACM SIGARCH Architecture News 38(1).

13

(a) Interleaving is a proxy of program behaviors;

(b) Interleaving uniformity is desirable,

and achievable with a weighted random walk

Key Insight 1: Interleaving Uniformity

Serialized execution

A1 A2 B1
B2

thread_A

thread_B

A3

A4

B3 B4
?

Probability

1

1 + 3

3

1 + 3

Selectivity
• Interleaving ≠ behavior. Interleaving uniform ≠ behavior uniform.

e.g., 10 interleavings may result in the same observable behavior (value of x)!

• With interleaving uniformity, most samples result in behavior #3!

• Behaviorally redundant samples!

the space of all interleavings,
partitioned by program behaviors

#1

#2 #3 #4

14

Motivating Example (1)

• Interleaving uniformity means that

most behaviors will almost never be sampled!

the space of
all interleavings

251 behaviors:
each with few interleaving

~ 21000

8 behaviors:
x = 31+y%8

15

Motivating Example (2)

• The projected interleavings of variable x

are much more balanced in the behavioral space!

the space of
all interleavings
on variable x

8 behaviors: x = 31+y%8

= 252

251 behaviors:
x ≥ 47

(depends on variable y!)

16

Uniform sampling of the interleavings of

an appropriate subset of program events

achieves effective behavioral exploration

Key Insight 2: Selective uniformity

17

Uniform sampling of the interleavings of

an appropriate subset of program events

achieves effective behavioral exploration

Given a subset of event ∆ ⊆ Σ, we want to

 [Uniformity] sample the interleaving of ∆ uniformly

18

Key Insight 2: Selective uniformity

Motivating Example (3)

• At the same time, we should not disable any

interleaving of y, or between x and y!

the space of
all interleavings
on variable x

8 behaviors: x = 31+y%8

= 252

251 behaviors:
x ≥ 47

depends on variable y!

19

Uniform sampling of the interleavings of

an appropriate subset of program events

achieves effective behavioral exploration

Given a subset of event ∆ ⊆ Σ, we want to

(1) [Uniformity] sample the interleaving of ∆ uniformly

(2) [Completeness] sample any interleaving over Σ with non-zero probability

20

Key Insight 2: Selective uniformity

Selective Uniform Random Walk

Given a subset of event ∆ ⊆ Σ, we want to

(1) [Uniformity] sample the interleaving of ∆ uniformly

(2) [Completeness] sample any interleaving over Σ with non-zero probability

Central Idea:

• Make eager decisions about the interleaving of ∆

with weighted random walk

• Only schedule Σ - ∆ so that the decision on ∆ is respected

21

Constant time per step: O(# of threads)

More details discussed in the paper!

Evaluation (1)

[RQ1] Is SURW better at exposing bugs compared to other
concurrency testing algorithms?

[RQ2] How do the two key components of SURW, uniformity
and selectivity, contribute to its effectiveness?

22

Evaluation (2)

3 established concurrency testing benchmarks in the community [1-3]

Other state-of-the-art algorithms: PCT-3 [4], PCT-10 [4], POS [5]

Baselines: Random Walk, Non-Selective, Non-Uniform

23

[1] Thomson, Paul, et al., 2016. "Concurrency testing using controlled schedulers: An empirical study." TOPC 2.4 (2016).

[2] Meng, Ruijie, et al., 2019. "ConVul: an effective tool for detecting concurrency vulnerabilities." ASE 2019.

[3] Liang, Jiashuo, et al., 2023. "RaceBench: A Triggerable and Observable Concurrency Bug Benchmark." AsiaCCS 2023.

[4] Yuan, Xinhao, et al., 2018. "Partial order aware concurrency sampling." CAV 2018.

[5] Burckhardt, Sebastian, et al., 2010. "A randomized scheduler with probabilistic guarantees of finding bugs." ACM SIGARCH Architecture News 38(1).

RQ1 Bug Finding (1)
[Metric 1]. Average # of bugs exposed by different algorithms (the higher, the better)

24

[Metric 2]. Average # of interleavings sampled to expose each bug (the lower, the better)

• On 26 / 35 targets, SURW requires the minimum number of schedules

• On 6 / 9 other targets, SURW requires only < 10 schedules on average

Benchmark SURW PCT POS Random Walk

SCTBench
(max. 37)

34.90 30.75 29.25 19.90

+13% +19% +75%

RaceBenchData
(max. 1,500)

944 461 885 489

+105% +7% +93%

RQ1 Bug Finding (2)

CVE-2016-1972:
SURW in ~10 schedules
vs. PCT >2k schedules

CS/twostage_100:
SURW in ~450 schedules
vs. >5k schedules

25

CS/reorder_100:
SURW in ~200 schedules
vs. >> 200k schedules

RQ1 Bug Finding (2)

26

Answer to RQ1

SURW outperforms other sampling

algorithms by a large margin in bug finding!

RQ2 Ablation Study (1)
Two ablative versions:

• Non-Uniform (N-U): Selective interesting subset + naïve random walk

• Non-Selective (N-S): Weighted random walk on the entire program

27

Benchmark SURW Non-Uniform Non-Selective

SCTBench
(max. 37)

34.90 29.70 30.75

+18% +14%

[Metric 1]. Average # of bugs exposed by different algorithms

Summary
Concurrency testing as sampling

SURW RW, POS PCT

Interleaving-uniformity sampling
via weighted random walk

1

2 3 4

1 2

3 4

Effective behavioral exploration
via selective uniformity

28

Concurrency testing as sampling

selectively uniform

Link to Artifact Link to Paper

	Slide 1: Selectively Uniform Concurrency Testing
	Slide 2: Overview
	Slide 3: Concurrent Programs (1)
	Slide 4: Concurrent Programs (2)
	Slide 5: Stress Testing
	Slide 6: Controlled Concurrency Testing (CCT)
	Slide 7
	Slide 8: CCT as a Sampling Process
	Slide 9
	Slide 10: Uniformity
	Slide 11: Motivating Example (1)
	Slide 12: Motivating Example (2)
	Slide 13
	Slide 14: Selectivity
	Slide 15: Motivating Example (1)
	Slide 16: Motivating Example (2)
	Slide 17
	Slide 18
	Slide 19: Motivating Example (3)
	Slide 20
	Slide 21: Selective Uniform Random Walk
	Slide 22: Evaluation (1)
	Slide 23: Evaluation (2)
	Slide 24: RQ1 Bug Finding (1)
	Slide 25: RQ1 Bug Finding (2)
	Slide 26: RQ1 Bug Finding (2)
	Slide 27: RQ2 Ablation Study (1)
	Slide 28: Summary

