#~ ASPLOS

Selectively Uniform
Concurrency Testing

Huan Zhao
Co-Authors: Dylan). Wolff Umang Mathur Abhik Roychoudhury

{ zhaohuan, wolffd, umathur, abhik } @comp.nus.edu.sg

% National University
of Singapore

Overview

Background

Model Controlled Concurrency Testing (CCT)
as a sampling process

Our Work

What makes a sampling process ideal?

Concurrent Programs (1)

Critical digital infrastructure Disastrous concurrency bugs

WS Qthe Therac-25 Radiation Therapy Machine (1980s)
Northeastern Blackout (2003) T s ‘
APACHE SR
HTTP SERVER PROJECT | A Y i
v .. - s 2 ‘|)

&
%

Boeing 787 Dreamliner (2013)

@ 0 O Google Cloud

PyTorch & Q unlty

android Llnux Spr K \&D R
.mongoDB® dWsS §€ kafka

Concurrent Programs (2)

1 void thread_A() {
2 X = x<<1;
3 X = x<<1;
* Non-deterministic behaviors depending on 4 X = Xx<<1;
interleavings, i.e., ordering of thread executions > X = x<<1;
6 X = x<<1;
: : . 7 3}
* With 2 threads each with 5 atomic events,
there are 252 possible observable behaviors (value of x)
1 void thread_B() {
. . . . 2 X = x<<1+1;
- Concurrency bugs may only manifest in few interleavings 3 X = x<<1+1;
- Difficult to expose and reproduce concurrency bugs! 4 X = x<<1+1;
> X = x<<1+1;
6 X = x<<1+1;
7 3}

Stress Testing

* Repeated and uncontrolled executions with the default OS scheduler

* However, wildly different interleavings are possible when deployed,

due to unpredictable changes to the system workload!

>

» Executed interleavings
the space of — \ _ Interleavings with
all interleavings / buggy behaviors

Controlled Concurrency Testing (CCT)

1. Serialized program execution

2. Online decision of which event to run next

Randomized CCT: Random Walk void thread AQ) |

1
2 X = x<<1;
3 X = x<<1;
1. Serialized program execution 4 x = x<<1;
5 X = x<<1;
6 X = x<<1;
2. Choose each thread to run with equal prob. 7 3
Probability thread_A
Serialized execution 1 A 1 void thread_B() {
2 2 X = x<<1+1;
A1 A2 A3 ? 3 X = x<<1+1;
1 H 4 X = Xx<<1+1;
2 5 X = x<<1+1;
thread_B 6 X = x<<1+1;
7 3}

CCT as a Sampling Process

 Sampling of interleavings according to a prob. distribution
* Lightweight yet effective schedule generation, often with prob. guarantees

* Reproduces exposed bugs deterministically

» Executed interleavings
\\ _ Interleavings with

" buggy behaviors

the space of
all mterleavmgs

What makes

a sampling process ideal?

Uniformity

The optimal sampling strategy:

Sample each program behavior with equal probability (i.e., uniformly)

- maximize the minimum probability of any behavior being sampled

However, behaviors are program dependent and unknown a priori!

The mostfine-grained notion of behaviors: interleavings!

10

Motivating Example (1)

void thread_A() {
Xx<<1;
x<<1;
x<<1;
x<<1;
x<<71;

X X X X X

* Interleavings €=» (observable) program behaviors, i.e., value of x

NN R W

* Total number of interleavings / behaviors: (10 choose 5) = 252

void thread_B() {
Xx<<1+1;
X<<1+1;
X<<T1+1;
X<<1+1;
X<<1+1;

* Anideal algorithm samples each value of x w.p. 1/252

NN e W
X X X X X
L1 I | A | I | B

11

M . . E l_ 2 Total # of int. / behaviors =252

otivating Example (2) s e e
= x<<1;

= x<<1;

x<<1;

= x<<1;

= x<<T7;

NN U e W e
X X X X X
]

Frequency

void thread_B() {
= x<<1+1;
= x<<1+1;
X<<T1+1;
= x<<1+1;
= x<<1+1;

Ideal Random Walk PCT-10 [2]
Partial Order Sampling [1]

NN e W
X X X X X
1

Existing strategies are highly biased!

For RW/PQOS: 2 events are sampled w.p. ; but 140 events are sampled w.p.
For PCT-10: 38 interleavings are not withessed once in >25,000 executions in our experiment!

[1] Yuan, Xinhao, et al., 2018. "Partial order aware concurrency sampling." CAV 2018.
[2] Burckhardt, Sebastian, et al., 2010. "A randomized scheduler with probabilistic guarantees of finding bugs.” ACM SIGARCH Architecture News 38(1). 12

Key Insight 1: Interleaving Uniformity

(a) Interleaving is a proxy of program behaviors;

(b) Interleaving uniformity is desirable,

and achievable with a weighted random walk

Probability thread A
Serialized execution 1

_— A4
1+3
A1 A2 B1 A3 ?
> OEm
143

thread B

|

13

Selectivity

* Interleaving # behavior. Interleaving uniform # behavior uniform.

e.g., 10 interleavings may result in the same observable behavior (value of x)!

* With interleaving uniformity, most samples result in behavior #3!

* Behaviorally redundant samples! /

the space of all interleavings, #2
partitioned by program behaviors

#3

—

#4

14

Motivating Example (1)

1
2
3
4
* Interleaving uniformity means that 2
. . 7
most behaviors will almost never be sampled! g
9
10
251 behaviors:
each with few interleaving .
~ 21000 2
3
4
;Tleirsm’lcoezirfeea?/:n S 8 behaviors: >
& X = 31+y%8 6
7
8
9
10

void thread_A() {

X
X
X
X
X
y
/
y

x<<1;
x<<1;
x<<1;
x<<1;
Xx<<1;
y<<1;

/ repeat 1000x

y<<1;

void thread_B() {
y = y<<1+1;
// repeat 1000x

y

xX X X X X

y<<1+1;
x<<1+1;
x<<1+1;
X<<1+1;
X<<1+1;
X<<1+1+y%8;

15

Motivating Example (2)

1
2
3
4
* The projected interleavings of variable x 2
. . 7
are much more balanced in the behavioral space! ;
9
10
8 behaviors: x = 31+y%8
(depends on variable y!) 1
= 252 2
3
the space of 4
allinterleavings 251 behaviors: 5
on variable x x =47 6
7
8
9
10

void thread_A() {

X
X
X
X
X
y
/
y

x<<1;
x<<1;
x<<1;
x<<1,;
Xx<<1;
y<<1;

/ repeat 1000x

y<<1;

void thread_B() {
y = y<<1+1j
// repeat 1000x

y

xX X X X X

o uw mnw n n

y<<1+1;
Xx<<1+1;
x<<1+1;
Xx<<1+1;
Xx<<1+1;
X<<T1+1+y%8;

16

Key Insight 2: Selective uniformity

Uniform sampling of the interleavings of

an appropriate subset of program events

achieves effective behavioral exploration

17

Key Insight 2: Selective uniformity

Uniform sampling of the interleavings of

an appropriate subset of program events

achieves effective behavioral exploration

Given a subset of event A € 2, we wantto

[Uniformity] sample the interleaving of A uniformly

18

Motivating Example (3)

1
2
3
4
* Atthe same time, we should not disable any 2
. . 7
Interleaving of y, or between x and y! o
9
depends on variable y! 10
8 behaviors: x=31+y%8
1
=252 z
3
the space of 4
all interleavings 251 behaviors: 5
on variable x x =47 6
7
8
9
10

void thread_A() {

X
X
X
X
X
y
/
y

x<<1;
x<<1;
x<<1;
x<<1,;
Xx<<1;
y<<1;

/ repeat 1000x

y<<1;

void thread_B() {
y = y<<1+1;
// repeat 1000x

y

xX X X X X

y<<1+1;
Xx<<1+1;
x<<1+1;
Xx<<1+1;
Xx<<1+1;
X<<T1+1+y%8;

19

Key Insight 2: Selective uniformity

Uniform sampling of the interleavings of

an appropriate subset of program events

achieves effective behavioral exploration

Given a subset of event A € 2, we wantto
(1) [Uniformity] sample the interleaving of A uniformly

(2) [Completeness] sample any interleaving over 2 with non-zero probability

20

Selective Uniform Random Walk

Given a subset of event A € 2, we wantto

(1) [Uniformity] sample the interleaving of A uniformly

(2) [Completeness] sample any interleaving over 2 with non-zero probability

Central Idea:

* Make eager decisions about the interleaving of A
with weighted random walk
* Only schedule 2 - A so that the decision on A is respected

Constant time per step: O(# of threads)

More details discussed in the paper!

Algorithm 2: SURW

1 Input: A; // set of interesting events
2 Input: ny,...,nk; // interesting event counts
3 TiNext < random T; weighted by n;;

4 blocked « 0;

5 while E « getEnabled() # 0 do

6

7
8
9
10
11
12
13
14

T; « pickFrom(E - blocked);

if nextEvent(T;) € A then

if Tinex: == T; then
n <—n;—1;
TiNex: < random T; weighted by n;;
blocked «— 0;

else

‘ blocked.add(T;); continue;
execute(nextEvent(T;));

Evaluation (1)

[RQ1] Is SURW better at exposing bugs compared to other

concurrency testing algorithms?

[RQ2] How do the two key components of SURW, uniformity
and selectivity, contribute to its effectiveness?

22

Evaluation (2)

3 established concurrency testing benchmarks in the community [1-3]
Other state-of-the-art algorithms: PCT-3 [4], PCT-10 [4], POS [5]

Baselines: Random Walk, Non-Selective, Non-Uniform

[1] Thomson, Paul, et al., 2016. "Concurrency testing using controlled schedulers: An empirical study.” TOPC 2.4 (2016).
[2] Meng, Ruijie, et al., 2019. "ConVul: an effective tool for detecting concurrency vulnerabilities." ASE 2019.

[3] Liang, Jiashuo, et al., 2023. "RaceBench: A Triggerable and Observable Concurrency Bug Benchmark." AsiaCCS 2023.
[4] Yuan, Xinhao, et al., 2018. "Partial order aware concurrency sampling." CAV 2018.

[5] Burckhardt, Sebastian, et al., 2010. "A randomized scheduler with probabilistic guarantees of finding bugs.” ACM SIGARCH Architecture News 38(1). 23

RQ1 Bug Finding (1)
[Metric 1]. Average # of bugs exposed by different algorithms (the higher, the better)

"~ bonchmark || PcT | POS | Randomwalk

SCTBench 34.90 30.75 29.25 19.90
(max. 37)
+13% +19% +75%
RaceBenchData 944 461 885 489
(max. 1,500)
+105% +7% +93%

[Metric 2]. Average # of interleavings sampled to expose each bug (the lower, the better)

- on26/35 targets, SURW requires the minimum number of schedules

. on6 /9 other targets, SURW requires only < 10 schedules on average

24

RQ1 Bug Finding (2)

Target SURW PCT-3 PCT-10 POS Random
Walk
CS/twostage §+4 13+ 14 9+10 15+12 464 + 581
CS/twostage_20 63 159 + 151 101 + 92 156 + 137 -
CS/twostage_50 20+ 17 1676 £ 1715 692 + 392 1637 £ 1385 -
CS/twostage_100 454 + 444 7466 + 831" 5726 + 2591 6674 + 2877 -
CS/reorder 3 7+7 185 + 199 148 + 191 86 + 70 -
CS/reorder 4 716 554 + 643 362 + 213 533 + 651 -
CS/reorder_5 10+9 647 £ 517 1094 + 1216 2169 + 2182 -
CS/reorder_10 17 £ 11 3225 + 2426% 4462 + 3266 - -
CS/reorder 20 6+4 3005 + 2680 3297 + 2877* - -
CS/reorder 50 13+ 12 3304 + 1721* - - -
CS/reorder_100 194 + 214 - - - -
ConVul/CVE-2013-1792 15+ 13 95 + 83 50 £ 61 39 + 33 364 + 289
ConVul/CVE-2016-1972 11+8 4902 + 2391* 2712 + 2704* 34 + 34 299 + 256
ConVul/CVE-2016-1973 5£3 10+ 8 6+3 54 308 + 333
ConVul/CVE-2016-7911 8+9 20+ 18 15+ 15 11+9 3+2
ConVul/CVE-2016-9806 3+2 7+6 4+3 7+£5 2209 £ 2065
ConVul/CVE-2017-15265 - - - - -
ConVul/CVE-2017-6346 15+ 10 24 + 18 20+ 19 10+9 3+4

CS/twostage 100:
SURW in schedules
VS. >5k schedules

CS/reorder_100:
SURW in schedules
vs. >> 200k schedules

CVE-2016-1972:
SURW in schedules
vs. PCT >2k schedules

25

RQ1 Bug Finding (2)

Answer to RQ1

SURW outperforms other sampling

algorithms by a large margin in bug finding!

26

RQ2 Ablation Study (1)

Two ablative versions:

Non-Uniform (N-U): Selective interesting subset + naive random walk

* Non-Selective (N-S): Weighted random walk on the entire program

[Metric 1]. Average # of bugs exposed by different algorithms

"~ Gonchmaric || Non-Unitorn | Non-Solsctive.

SCTBench 34.90 29.70 30.75
(max. 37)

+18% +14%

27

Summary

Concurrency testing as sampling Interleaving-uniformity sampling Effective behavioral exploration
Interleavings with via weighted random walk via selective uniformity
buggy behaviors

o
£
&
& 3
3
o
8¢

SURW RW, POS PCT

the space of
allinterleavings

Concurrency testing as sampling

selectively uniform

Link to Artifact Link to Paper

28

	Slide 1: Selectively Uniform Concurrency Testing
	Slide 2: Overview
	Slide 3: Concurrent Programs (1)
	Slide 4: Concurrent Programs (2)
	Slide 5: Stress Testing
	Slide 6: Controlled Concurrency Testing (CCT)
	Slide 7
	Slide 8: CCT as a Sampling Process
	Slide 9
	Slide 10: Uniformity
	Slide 11: Motivating Example (1)
	Slide 12: Motivating Example (2)
	Slide 13
	Slide 14: Selectivity
	Slide 15: Motivating Example (1)
	Slide 16: Motivating Example (2)
	Slide 17
	Slide 18
	Slide 19: Motivating Example (3)
	Slide 20
	Slide 21: Selective Uniform Random Walk
	Slide 22: Evaluation (1)
	Slide 23: Evaluation (2)
	Slide 24: RQ1 Bug Finding (1)
	Slide 25: RQ1 Bug Finding (2)
	Slide 26: RQ1 Bug Finding (2)
	Slide 27: RQ2 Ablation Study (1)
	Slide 28: Summary

